Fourier expansion of a plane wave

Heedong Goh

January 15, 2022

Consider a plane wave propagating with an angle of θ, i.e.,

$$
\begin{equation*}
P(r, \phi)=e^{-i k r \cos (\phi-\theta)} . \tag{1}
\end{equation*}
$$

In the above, (r, ϕ) is the polar coordinates and $e^{i \omega t}$ is assumed. We see that the above function is periodic in $\phi-\theta \equiv \alpha$; thus, we can expand the function as a Fourier series, i.e.,

$$
\begin{equation*}
P(r, \phi)=e^{-i k r \cos \alpha}=\sum_{n \in \mathbb{Z}} c_{n} e^{i n \alpha} . \tag{2}
\end{equation*}
$$

The corresponding Fourier coefficients c_{n} can be calculated by

$$
\begin{align*}
c_{n} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-i k r \cos \alpha} e^{-i n \alpha} d \alpha \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-i k r \cos \alpha}[\cos (n \alpha)-i \sin (n \alpha)] d \alpha \quad(\Leftarrow \text { symmetry }) \\
& =\frac{1}{\pi} \int_{0}^{\pi} e^{-i k r \cos \alpha} \cos (n \alpha) d \alpha \quad(\Leftarrow \pi-\tau=\alpha) \\
& =\frac{(-1)^{n}}{\pi} \int_{0}^{\pi} e^{i k r \cos \tau} \cos (n \tau) d \tau \quad\left(\Leftarrow J_{n}(x)=\frac{i^{-n}}{\pi} \int_{0}^{\pi} e^{i x \cos \tau} \cos (n \tau) d \tau\right) \\
& =i^{-n} J_{n}(k r) \tag{3}
\end{align*}
$$

Thus, the Fourier series expansion of a plane wave is written in terms of Bessel functions as ${ }^{1}$

$$
\begin{equation*}
P(r, \phi)=e^{-i k r \cos (\phi-\theta)}=\sum_{n \in \mathbb{Z}} i^{-n} J_{n}(k r) e^{i n(\phi-\theta)} \tag{4}
\end{equation*}
$$

Figure 1: Finite summation of the Fourier series (4); $n \in[-N, N] \subset \mathbb{Z} ; \theta=0$; real part

[^0]
[^0]: ${ }^{1}$ For $e^{-i \omega t}$, we may define $P^{\prime}(r, \phi)=e^{i k r \cos (\phi-\theta)}=\sum_{n \in \mathbb{Z}} i^{n} J_{n}(k r) e^{i n(\phi-\theta)}$.

