Fourier expansion of a plane wave
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Consider a plane wave propagating with an angle of 6, i.e.,
P(T, ¢) _ e—z’krcos((b—é). (1)

In the above, (7, ) is the polar coordinates and e’ is assumed. We see that the above function is periodic
in ¢ — 0 = «; thus, we can expand the function as a Fourier series, i.e.,

P (’I”, ¢) :efikr cosa _ Z Cneina. (2)
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The corresponding Fourier coefficients ¢, can be calculated by
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Thus, the Fourier series expansion of a plane wave is written in terms of Bessel functions as’

P (r,0) = 7 *reon @m0 = 3 7 i gy (hr) (070, (4)
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Figure 1: Finite summation of the Fourier series (4); n € [N, N] C Z; 0 = 0; real part

IFor e we may define P’ (r,¢) = etk cos(6—0) — Y onez " JIn (k) ein(é=0)



