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Abstract

We analyze the dispersion characteristics of finite element (FE) and finite difference (FD) approxi-
mations of a wave equation in the context of a discrete periodic medium.

1 Mass-spring system: a discrete periodic medium

We first consider a simple discrete periodic medium, i.e., an infinite train of mass-spring system with the
periodicity of p (Figure 1). The governing equation for the system is

0 =K (un−1 − un)−K (un − un+1)−M ∂2un
∂t2

=K (un−1 − 2un + un+1)−M ∂2un
∂t2

n ∈ Z, (1)

where un is a displacement at each node, M is a mass, and K is a spring constant.
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Figure 1: Schematic of an infinite train of mass-spring system

We assume a plane-wave-like ansatz, i.e.,

un = Aei(knp−ωt). (2)

In the above, A is a constant and ω is a circular frequency. The ansatz satisfies

un+1 = eikpun and (3a)

un−1 = e−ikpun, (3b)

which are the Floquet-Bloch boundary condition of discrete periodic systems. Plugging (2) and (3) into the
governing equation (1), we have an eigenvalue problem for kd, i.e.,

0 =K
(
e−ikp − 2 + eikp

)
un +Mω2un

=

(
−4K sin2 kp

2
+Mω2

)
un. (4)
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Then, for a given ω ∈ R, the condition for having nontrivial solutions is

ω2

ω2
os

= 4 sin2 kp

2
, (5)

where ωos =
√
K/M is introduced to normalize the frequency. Figure 2 shows the dispersion relation of the

mass-spring system. The dispersion curve is symmetric about kp = 0 and periodic with a periodicity of 2π
in kp. The phase and the group velocities for kp ∈ [0, π] are

vph =
ω

k
= ωosp

sin (kp/2)

kp/2
and (6)

vgr =
∂ω

∂k
= ωosp cos

kp

2
. (7)

Around the origin, or a small kp, we have nearly linear dispersion, where vph = vgr = ωosp. No propagating
wave exists above the cutoff frequency ωc = 2ωos.
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Figure 2: Dispersion relation of an infinite train of mass-spring system

2 One-dimensional wave propagation

We compare the dispersion characteristics of the analytical solution and its finite difference- and finite
element-approximations of a one-dimensional wave equation.

A one-dimensional wave equation in an unbounded domain reads

0 =µ
∂2u

∂x2
− ρ∂

2u

∂t2
x ∈ R, (8)

where ρ is a density and µ is a modulus. Then, the dispersion relation is

0 =µk2 − ρω2. (9)

Thus, we have a linear relation between k and ω, or a non-dispersive medium, where the phase and group
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velocities are

vph =
ω

k
=

√
µ

ρ
≡ c and (10)

vgr =
∂ω

∂k
= c. (11)

2.1 Finite difference method

Here, we approximate the spatial derivatives of the wave equation using a finite difference method (FDM).
When a central differencing scheme is used with the sampling interval of p, the wave equation can be written
as a mass-spring system as (1), i.e.,

0 =µ
un−1 − 2un + un+1

p2
− ρ∂

2un
∂t2

=
µ

p
(un−1 − 2un + un+1)− ρp∂

2un
∂t2

=Keff (un−1 − 2un + un+1)−Meff
∂2un
∂t2

. (12)

In above, the effective mass and the spring constant are defined by

Meff =ρp and (13a)

Keff =
µ

p
. (13b)

Thus, the central difference scheme yields to a discrete periodic medium, which have the same dispersive
characteristics with those of the mass-spring system.

Figure 3 shows the dispersion curves of an analytical and a numerical (central differencing scheme) solutions.
Similar to the mass-spring system, ωos =

√
Keff/Meff is introduced to normalize the frequency ω. Compared

to the non-dispersive analytical solution, FDM has a numerical dispersion, which is periodic in kp and
under estimates the frequency ω. The periodicity results in aliasing for |kp| > π. Thus, for the wavelength of
λ = 2π/k, the minimum sampling interval to avoid aliasing is λ/2, which is the Nyquist frequency. Moreover,
the FDM cannot support a wave propagation when the frequency ω is above the cutoff frequency ωc = 2ωos.
We define a relative error of the frequency as

‖e‖(a,b) =

[∫ b
a
|ωnumerical − ωanalytical|2 d (kp)∫ b

a
|ωanalytical|2 d (kp)

]1/2

. (14)

Then, we have ‖e‖(0,π/4) ≈ 1.67 % and ‖e‖(0,π) ≈ 24.47 %, where p = λ/8 for kp = π/4 and p = λ/2 for
kp = π.

2.2 Finite element method

The wave equation approximated by a finite element method is

0 = − un
∑
m∈Z

∫
R

∂ϕm
∂x

µ
∂ϕn
∂x

dx− ∂2un
∂t2

∑
m∈Z

∫
R
ϕmρϕndx n ∈ Z. (15)

Here, we use linear shape functions, i.e.,

ϕn =

 (x+ p− pn) /p x ∈ (pn− p, pn)
(p+ pn− x) /p x ∈ (pn, pn+ p)
0 otherwise

. (16)
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Figure 3: Dispersion curves of analytical, and FD solutions

Then, the above equation (15) can be written as

0 =
µ

p
(un−1 − 2un + un+1)− ρp

3

(
1

2

∂2un−1

∂t2
+ 2

∂2un
∂t2

+
1

2

∂2un+1

∂t2

)
=
µ

p
(un−1 − 2un + un+1)− ρp

(
1− 2

3
sin2 kp

2

)
∂2un
∂t2

=Keff (un−1 − 2un + un+1)−Meff
∂2un
∂t2

, (17)

where

Meff = ρp

(
1− 2

3
sin2 kp

2

)
and (18a)

Keff =
µ

p
. (18b)

The dispersion relation is given as

ω2

ω2
os

=
4 sin2 kp

2

1− 2
3 sin2 kp

2

, (19)

where

ωos = lim
kp→0

√
Keff

Meff
. (20)

Thus, the FE approximation can also be regarded as a discrete periodic medium with frequency-dependent
effective mass. Figure 4 shows the dispersion curve of the FE approximation. Similar to the FDM case, a
cutoff frequency exists at ωc = 2

√
3ωos and the dispersive curve is symmetric and periodic in kp with peri-

odicity of 2π, thus, aliasing is present. The dispersion curve of FEM overestimates the frequency compared
to the analytical solution, however, the curve is more “linear” compared to that of FDM. the relative error
of the frequency ω is summarized in table 1.
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Figure 4: Dispersion curves of analytical, FD, and FE approximations

Table 1: Relative error ‖e‖(a,b)
(a, b) FDM (central) FEM (linear)

(0, π/4) 1.67 % 1.69 %
(0, π) 24.47 % 16.12 %
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