Approximation of functions

Heedong Goh

December 12, 2020

1 Change of basis

The (contravariant) component of a vector v^{i} corresponds to an orthonomal basis \mathbf{e}_{i} can be easily obtained by computing its projection on the basis, i.e.,

$$
\begin{equation*}
\left(\mathbf{v}, \mathbf{e}_{i}\right)=v^{i} . \tag{1}
\end{equation*}
$$

However, we need a rigorous approach for non-orthonormal bases; the contravariant component of a vector v^{i} is obtained by its projection on the dual basis \mathbf{g}^{i}, i.e.,

$$
\begin{equation*}
\left(\mathbf{v}, \mathbf{g}^{i}\right)=\left(v^{j} \mathbf{g}_{j}, \mathbf{g}^{i}\right)=v^{j}\left(\mathbf{g}_{j}, \mathbf{g}^{i}\right)=v^{j} \delta_{j}^{i}=v^{i} \tag{2}
\end{equation*}
$$

Similary, we can calculate the covariant component of a vector by

$$
\begin{equation*}
\left(\mathbf{v}, \mathbf{g}_{i}\right)=v_{i} . \tag{3}
\end{equation*}
$$

We can still calculate the contravariant components of a vector with basis, however, in a sligthly convoluted way, i.e.,

$$
\begin{align*}
\left(\mathbf{v}, \mathbf{g}_{i}\right) & =\left(v^{j} \mathbf{g}_{j}, \mathbf{g}_{i}\right) \\
& =v^{j}\left(\mathbf{g}_{j}, \mathbf{g}_{i}\right) \tag{4}
\end{align*}
$$

In the above, we have a system of equations, where v^{j} are the unknowns. Thus, in general, we need to solve for all v^{j}, simultaneously. The above system of equations can be decoupled when the basis is orthogonal, i.e.,

$$
\begin{equation*}
v^{i}=\frac{\left(\mathbf{v}, \mathbf{g}_{i}\right)}{\left(\mathbf{g}_{i}, \mathbf{g}_{i}\right)} \tag{5}
\end{equation*}
$$

For an orthonormal basis, (5) reduces to (1).
Example 1.1 (Coordinate transform) Calculate the component of a vector $\mathbf{v}=2 \mathbf{e}_{1}+\mathbf{e}_{2}$ with respect to basis $\mathbf{g}_{1}=\mathbf{e}_{1}$ and $\mathbf{g}_{2}=\mathbf{e}_{1}+\mathbf{e}_{2}$.
Expanding the (4), we have

$$
\begin{align*}
v^{1} \mathbf{g}_{1} \cdot \mathbf{g}_{1}+v^{2} \mathbf{g}_{2} \cdot \mathbf{g}_{1} & =\mathbf{v} \cdot \mathbf{g}_{1} \quad \text { and } \tag{6a}\\
v^{1} \mathbf{g}_{1} \cdot \mathbf{g}_{2}+v^{2} \mathbf{g}_{2} \cdot \mathbf{g}_{2} & =\mathbf{v} \cdot \mathbf{g}_{2} . \tag{6b}
\end{align*}
$$

In the above, we have $\mathbf{g}_{1} \cdot \mathbf{g}_{1}=\mathbf{e}_{1} \cdot \mathbf{e}_{1}=1, \mathbf{g}_{1} \cdot \mathbf{g}_{2}=\mathbf{g}_{2} \cdot \mathbf{g}_{1}=\mathbf{e}_{1} \cdot\left(\mathbf{e}_{1}+\mathbf{e}_{2}\right)=1, \mathbf{g}_{2} \cdot \mathbf{g}_{2}=\left(\mathbf{e}_{1}+\mathbf{e}_{2}\right) \cdot\left(\mathbf{e}_{1}+\mathbf{e}_{2}\right)=2$, $\mathbf{v} \cdot \mathbf{g}_{1}=\left(2 \mathbf{e}_{1}+\mathbf{e}_{2}\right) \cdot \mathbf{e}_{1}=2$, and $\mathbf{v} \cdot \mathbf{g}_{2}=\left(2 \mathbf{e}_{1}+\mathbf{e}_{2}\right) \cdot\left(\mathbf{e}_{1}+\mathbf{e}_{2}\right)=3$. Rewriting (6) into a matrix equation, we have

$$
\left[\begin{array}{ll}
1 & 1 \tag{7}\\
1 & 2
\end{array}\right]\binom{v^{1}}{v^{2}}=\binom{2}{3} .
$$

Then, the solution to the above equation is

$$
\begin{equation*}
v^{1}=1, \quad \text { and } \quad v^{2}=1 \tag{8}
\end{equation*}
$$

Alternatively, we can obtain the same result using dual bases, i.e., $\mathbf{g}^{1}=\mathbf{e}_{1}-\mathbf{e}_{2}$ and $\mathbf{g}^{2}=\mathbf{e}_{2}$. Then, the equation (2) gives

$$
\begin{align*}
& v^{1}=\mathbf{v} \cdot \mathbf{g}^{1}=\left(2 \mathbf{e}_{1}+\mathbf{e}_{2}\right) \cdot\left(\mathbf{e}_{1}-\mathbf{e}_{2}\right)=1 \quad \text { and } \tag{9a}\\
& v^{2}=\mathbf{v} \cdot \mathbf{g}^{2}=\left(2 \mathbf{e}_{1}+\mathbf{e}_{2}\right) \cdot \mathbf{e}_{2}=1 \tag{9b}
\end{align*}
$$

In summary, we have $\mathbf{v}=2 \mathbf{e}_{1}+\mathbf{e}_{2}=\mathbf{g}_{1}+\mathbf{g}_{2}$.
Example 1.2 (Fourier series) Consider an odd function $f(x)$ defined as below

$$
\begin{equation*}
f(x)=x, \quad x \in(-0.5,0.5) \tag{10}
\end{equation*}
$$

Find the component of sinusoidal basis, i.e.,

$$
\begin{equation*}
g_{n}=\sin (n \pi x), \quad n \in \mathbb{Z}_{++} \tag{11}
\end{equation*}
$$

The above sinusoidal basis is orthogonal; thus, we use (5), where

$$
\begin{align*}
\left(g_{n}, g_{n}\right) & =\int_{-0.5}^{0.5} \sin (n \pi x) \sin (n \pi x) d x=0.5, \quad \forall n \in \mathbb{Z}_{++} \quad \text { and } \tag{12a}\\
\left(f, g_{n}\right) & =\int_{-0.5}^{0.5} x \sin (n \pi x) d x=\frac{2 \sin (n \pi / 2)}{(n \pi)^{2}}-\frac{\cos (n \pi / 2)}{n \pi} \tag{12b}
\end{align*}
$$

Then, we have

$$
\begin{equation*}
v^{n}=\frac{\left(f, g_{n}\right)}{\left(g_{n}, g_{n}\right)}=\frac{\sin (n \pi / 2)}{(n \pi)^{2}}-\frac{\cos (n \pi / 2)}{2 n \pi} \tag{13}
\end{equation*}
$$

Finally, the function $f(x)$ is discretized, or expressed by linear combinations of basis g_{n}, i.e.,

$$
\begin{equation*}
f(x)=\sum_{n=1}^{\infty}\left(\frac{\sin (n \pi / 2)}{(n \pi)^{2}}-\frac{\cos (n \pi / 2)}{2 n \pi}\right) \sin (n \pi x) \tag{14}
\end{equation*}
$$

2 Approximation

What will happen if the choice of basis does not span the function space, e.g., a truncated Fourier series? In such case, we have an approximation of a function. In fact, we obtain the best approximation with respect to the norm induced by the associated inner product. We can verify this by formulating an optimization problem, or least square error problem: given f and g_{n}, find v^{n} such that

$$
\begin{equation*}
\min \Pi, \quad \Pi=\frac{1}{2}\left\|v^{n} g_{n}-f\right\|^{2} \tag{15}
\end{equation*}
$$

In the above, the objective functional Π is proportional to the square of the error, measured by the induced norm, i.e.,

$$
\begin{equation*}
\|a\|=\sqrt{(a, a)} . \tag{16}
\end{equation*}
$$

The objective functional Π vanishies if and only if $v^{n} g_{n}=f$; otherwise, it will always return a positive non-zero number. Then, the minimization problem can be solved by satisfying the first optimality condition, i.e.,

$$
\begin{align*}
0 & =\frac{\partial \Pi}{\partial v^{n}} \\
& =\frac{1}{2} \frac{\partial}{\partial v^{n}}\left(v^{m} g_{m}-f, v^{m} g_{m}-f\right) \\
& =\left(v^{m} g_{m}-f, g_{n}\right) \\
& =v^{m}\left(g_{m}, g_{n}\right)-\left(g_{n}, f\right) \tag{17}
\end{align*}
$$

Thus, we have recovered the same expression as (4).
Example 2.1 (Polynomial approximation) Approximate a function $f(x)=\sin x, x \in(-\pi, \pi)$ using polynomials $g_{n}=x^{n}, n=1,2, \ldots, N, N=5$.
We use (4), where

$$
\begin{align*}
\left(g_{m}, g_{n}\right) & =\int_{-\pi}^{\pi} x^{m+n} d x=\frac{\pi^{m+n+1}-(-\pi)^{m+n+1}}{m+n+1} \tag{18a}\\
\left(g_{1}, \sin x\right) & =2 \pi \tag{18b}\\
\left(g_{2}, \sin x\right) & =0 \tag{18c}\\
\left(g_{3}, \sin x\right) & =2 \pi\left(\pi^{2}-6\right) \tag{18d}\\
\left(g_{4}, \sin x\right) & =0, \quad \text { and } \tag{18e}\\
\left(g_{5}, \sin x\right) & =2 \pi\left(120-20 \pi^{2}+\pi^{4}\right) \tag{18f}
\end{align*}
$$

Then, we have $v^{1} \approx 0.9879, v^{2}=0, v^{3} \approx-0.1553, v^{4}=0$, and $v^{5} \approx 0.0056$. Figure 1 shows the polynomial approximations of function f using $N=3$ and $N=5$.

Figure 1: Polynomial approximations of $\sin x$ (Example 2.1)

Different choice of bases yield different accuracy, computational costs, stability, etc. Finite element method is one example, where we discretize a differential equation, therefore a function/solution, by a set of "local" basis.

