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1 Change of basis

The (contravariant) component of a vector vi corresponds to an orthonomal basis ei can be easily obtained
by computing its projection on the basis, i.e.,

(v, ei) = vi. (1)

However, we need a rigorous approach for non-orthonormal bases; the contravariant component of a vector
vi is obtained by its projection on the dual basis gi, i.e.,(

v,gi
)

=
(
vjgj ,g

i
)

= vj
(
gj ,g

i
)

= vjδij = vi. (2)

Similary, we can calculate the covariant component of a vector by

(v,gi) = vi. (3)

We can still calculate the contravariant components of a vector with basis, however, in a sligthly convoluted
way, i.e.,

(v,gi) =
(
vjgj ,gi

)
= vj (gj ,gi) . (4)

In the above, we have a system of equations, where vj are the unknowns. Thus, in general, we need to solve
for all vj , simultaneously. The above system of equations can be decoupled when the basis is orthogonal,
i.e.,

vi =
(v,gi)

(gi,gi)
. (5)

For an orthonormal basis, (5) reduces to (1).

Example 1.1 (Coordinate transform) Calculate the component of a vector v = 2e1 + e2 with respect to
basis g1 = e1 and g2 = e1 + e2.
Expanding the (4), we have

v1g1 · g1 + v2g2 · g1 =v · g1 and (6a)

v1g1 · g2 + v2g2 · g2 =v · g2. (6b)

In the above, we have g1·g1 = e1·e1 = 1, g1·g2 = g2·g1 = e1·(e1 + e2) = 1, g2·g2 = (e1 + e2)·(e1 + e2) = 2,
v · g1 = (2e1 + e2) · e1 = 2, and v · g2 = (2e1 + e2) · (e1 + e2) = 3. Rewriting (6) into a matrix equation, we
have [

1 1
1 2

](
v1

v2

)
=

(
2
3

)
. (7)
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Then, the solution to the above equation is

v1 = 1, and v2 = 1. (8)

Alternatively, we can obtain the same result using dual bases, i.e., g1 = e1 − e2 and g2 = e2. Then, the
equation (2) gives

v1 =v · g1 = (2e1 + e2) · (e1 − e2) = 1 and (9a)

v2 =v · g2 = (2e1 + e2) · e2 = 1. (9b)

In summary, we have v = 2e1 + e2 = g1 + g2.

Example 1.2 (Fourier series) Consider an odd function f(x) defined as below

f(x) =x, x ∈ (−0.5, 0.5). (10)

Find the component of sinusoidal basis, i.e.,

gn = sin (nπx) , n ∈ Z++. (11)

The above sinusoidal basis is orthogonal; thus, we use (5), where

(gn, gn) =

∫ 0.5

−0.5
sin (nπx) sin (nπx) dx = 0.5, ∀n ∈ Z++ and (12a)

(f, gn) =

∫ 0.5

−0.5
x sin (nπx) dx =

2 sin (nπ/2)

(nπ)
2 − cos (nπ/2)

nπ
. (12b)

Then, we have

vn =
(f, gn)

(gn, gn)
=

sin (nπ/2)

(nπ)
2 − cos (nπ/2)

2nπ
. (13)

Finally, the function f(x) is discretized, or expressed by linear combinations of basis gn, i.e.,

f(x) =

∞∑
n=1

(
sin (nπ/2)

(nπ)
2 − cos (nπ/2)

2nπ

)
sin (nπx) . (14)

2 Approximation

What will happen if the choice of basis does not span the function space, e.g., a truncated Fourier series? In
such case, we have an approximation of a function. In fact, we obtain the best approximation with respect
to the norm induced by the associated inner product. We can verify this by formulating an optimization
problem, or least square error problem: given f and gn, find vn such that

min Π, Π =
1

2
‖vngn − f‖2 . (15)

In the above, the objective functional Π is proportional to the square of the error, measured by the induced
norm, i.e.,

‖a‖ =
√

(a, a). (16)
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The objective functional Π vanishies if and only if vngn = f ; otherwise, it will always return a positive
non-zero number. Then, the minimization problem can be solved by satisfying the first optimality condition,
i.e.,

0 =
∂Π

∂vn

=
1

2

∂

∂vn
(vmgm − f, vmgm − f)

= (vmgm − f, gn)

= vm (gm, gn)− (gn, f) . (17)

Thus, we have recovered the same expression as (4).

Example 2.1 (Polynomial approximation) Approximate a function f(x) = sinx, x ∈ (−π, π) using
polynomials gn = xn, n = 1, 2, . . . , N , N = 5.
We use (4), where

(gm, gn) =

∫ π

−π
xm+ndx =

πm+n+1 − (−π)
m+n+1

m+ n+ 1
, (18a)

(g1, sinx) = 2π, (18b)

(g2, sinx) = 0, (18c)

(g3, sinx) = 2π
(
π2 − 6

)
, (18d)

(g4, sinx) = 0, and (18e)

(g5, sinx) = 2π
(
120− 20π2 + π4

)
. (18f)

Then, we have v1 ≈ 0.9879, v2 = 0, v3 ≈ −0.1553, v4 = 0, and v5 ≈ 0.0056. Figure 1 shows the polynomial
approximations of function f using N = 3 and N = 5. ♣
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Figure 1: Polynomial approximations of sinx (Example 2.1)

Different choice of bases yield different accuracy, computational costs, stability, etc. Finite element
method is one example, where we discretize a differential equation, therefore a function/solution, by a set of
“local” basis.
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