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Preface

This monograph is written for the course Mechanics of Materials offered in the
Department of Civil and Environmental Engineering at Seoul National Univer-
sity.

In preparing these notes, I borrowed many parts from the following books
and lecture notes: [Crandall et al., 2012,Hibbeler, 2010,Goodno and Gere, 2017,
Lee, 2022a,Lee, 2022b].

These lecture notes are a working manuscript, subject to ongoing refine-
ment and enhancement; I welcome and greatly appreciate any reports regarding
errors, typos, or any other inaccuracies found within the notes.
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Chapter 1

Preliminaries

1.1 Numbers, vectors, and tensors

A field is a set equipped with two operations: addition and multiplication sat-
isfying associativity and distributivity. Each operation is a group, where every
member has an additive inverse and every nonzero member has an multiplica-
tive inverse. For example, the real numbers form a field denoted by R and the
complex numbers form a field denoted by C.

Vectors are objects that can be added to each other and scaled by numbers to
produce new vectors. We say that two vectors, u and v, are linearly independent
when

αu+ βv = 0 (1.1)

is satified only if the numbers are α = β = 0. A vector space has dimension
n if the space has n linearly independent vectors but any set of n + 1 vectors
is linearly dependent. Then, any set of n lineary independent vectors can be
choosen as a basis, where an arbitrary vector can be expressed by

v =

N
∑

i=1

vigi = v1g1 + v2g2 + . . .+ vNgN . (1.2)

In the above, gi are the basis vectors and vi are the components. Throughout
these notes, we will always use orthonormal basis, i.e., Cartesian, where for all
basis vectors gi, we have

gi · gj =0 ∀i ̸= j and (1.3)

gi · gi =1. (1.4)

Here, · is a single contraction, i.e., a · b =
∑N

i=1 a
ibi. Formally, it is defined

using the concept of dual vectors, where their components is denoted by a lower
index. However, vectors and dual vectors become identical if an orthonormal
basis is used; thus, we will use lower indices for denoting vectors and their dual
from now on.

Tensors are generalization of numbers composed of vectors by a tensor op-
eration ⊗, which is defined as

(a⊗ b) c = (b · c)a. (1.5)

1
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Thus, a tensor is identified as a linear map of vectors to vectors. For example,
a second-order reads

A =

N
∑

i=1

N
∑

j=1

Aijgi ⊗ gj = A11g1 ⊗ g1 +A12g1 ⊗ g2 + . . .

+ANNgN ⊗ gN , (1.6)

where its operation on a vector v =
∑N

i=1 vigi is

Av =





N
∑

i=1

N
∑

j=1

Aijgi ⊗ gj





N
∑

k=1

vkgk

=

N
∑

i=1

N
∑

j=1

N
∑

k=1

Aijvk
(

gi ⊗ gj

)

gk

=

N
∑

i=1

N
∑

j=1

N
∑

k=1

Aijvk
(

gj · gk

)

gi

=

N
∑

i=1

N
∑

j=1

Aijvjgi. (1.7)

Here, we recovered the usual matrix-vector operation. The order of tensors can
be higher than two; for example a third-order tensor reads

B =

N
∑

i=1

N
∑

j=1

N
∑

k=1

Bijkgi ⊗ gj ⊗ gk

=B111g1 ⊗ g1 ⊗ g1 +B112g1 ⊗ g1 ⊗ g2 + . . .

+BNNNgN ⊗ gN ⊗ gN . (1.8)

In this context, a number can be considered as a tensor of zero order.
Additionally, we will omit summation symbols when expanding the compo-

nents of vectors and tensors. For example,

v =

N
∑

i=1

vigi = vigi and A =

N
∑

i=1

N
∑

j=1

Aijgi ⊗ gj = Aijgi ⊗ gj . (1.9)

We further omit the basis vector because we will always use the Cartesian. For
instance, the operation of a matrix on a vector is expressed as

Av =
N
∑

j=1

Aijvj = Aijvj . (1.10)

1.2 Algebraic and differential equations

An engineering problem often takes a form of equation solving, which is a de-
ductive process of unraveling unknowns out of an implicit information hidden
in equations. The operators of algebraic equations are +, −, ×, and ÷. For
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example, a system of linear algebraic equations reads:
Given A ∈ R

M×N and b ∈ R
M , find x ∈ R

N such that Ax = b or



















A11x1 +A12x2 + . . .+A1NxN = b1
A21x1 +A22x2 + . . .+A2NxN = b2

...
AM1x1 +AM2x2 + . . .+AMNxN = bM

(1.11)

or

N
∑

j=1

Aijxj = bi, i = 1, 2, . . . ,M. (1.12)

The unknowns of algebraic equations xj , are numbers, where the number of
unknowns, or dimension, N is typically finite. We also have a finite number of
equations denoted by M . Thanks to the linearity, we can find out whether the
problem is solvable by counting the number of independent equations, i.e.,







N > M no unique solution (underdetermined system)
N = M unique solution
N < M no solution (overdetermined system)

.

Consider a linearly suspended mass-spring system. The equilibrium equation
for each mass mi is

ki (xi − xi−1)− ki+1 (xi+1 − xi)−mig = 0, i = 0, 1, 2, . . . , N. (1.13)

Let x0 = 0; we have a system of linear algebraic equations,















k1 + k2 −k2 0 . . . 0
−k1 k2 + k3 −k3 . . . 0
0 −k2 k2 + k3 . . . 0
...

...
...

. . .
...

0 0 0 . . . kN





























x1

x2

x3

...
xN















=















m1g
m2g
m3g
...

mNg















. (1.14)

On the other hand, we seek for functions when solving differential equations,
which involves with differential operators. For example:
Given L : V → W and f ∈ W, find u ∈ V such that







Lu (x) ≡
d2u (x)

dx2
= f (x) , x ∈ (0, 1) (governing equation)

u (0) = u (1) = 0 (boundary conditions)
. (1.15)

In the above, the unknown function u : R → R and the corresponding governing
equation are defined over an interval x ∈ (0, 1), which excludes boundaries. The
function values at the boundaries are explicitly given as boundary conditions.
Unlike the algebraic equations, the dimension of a function space, such asW and
V, is infinite. When defining a function space, we consider a set of admissible
functions to satisfy physical/mathematical constraints such as continuity and
differentiability. Rigorous studies on function space or the existence and the
uniqueness of differential equations are out of our scope.
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We require n number of boundary conditions for a n-th order differential
equation. For each boundary, we can specify upto n − 1-th derivatives, where
the higher half, u, du/dx, . . ., dn/2u/dxn/2, are called the Dirichlet boundary
conditions and the lower half are called the Neumann boundary conditions. They
are also called essential and natural boundary conditions, respectively.

Consider the Newton’s second law, F = mü. The general solution u can be
obtained by integrating the equation twice, which gives

u =
1

2

F

m
t2 + C1t+ C2. (1.16)

In the above, we are left with two undetermined constants, C1 and C2. The
boundary, or the initial, conditions completes the analysis, e.g., u(0) = u0 and
u̇(0) = v0 gives C1 = vo and C2 = u0. Here, we specified both Dirichlet and
Neumann boundary conditions at t = 0, which are called Cauchy boundary
conditions.

1.3 Miscellanies

As mentioned earlier, a dot product, or a single contraction, is defined as (in
three dimension)

a · b = aibi = a1b1 + a2b2 + a3b3. (1.17)

We take the right-handed rule for the cross product between two vectors,
i.e.,

a× b = det





g1 g2 g3

a1 a2 a3
b1 b2 b3





= (a2b3 − a3b2) g1 + (a3b1 − a1b3) g2 + (a1b2 − a2b1) g3. (1.18)

Differentiation is defined as

df

dx
= lim

∆x→0

f (x+∆x)− f (x)

∆x
. (1.19)

Integration by parts states:

∫ b

a

u
dv

dx
dx = [uv]

x=b
x=a −

∫ b

a

du

dx
vdx, (1.20)

where [A(x)]
x=b
x=a = A(x)|x=b − A(x)|x=a = A(b)−A(a).

Dirac delta function is a generalized function or a distribution, acting on a
regular function f(x), it is defined such that [Gel’Fand and Shilov, 1964]

(f(x), δ(x− xo)) =

∫

∞

−∞

f(x)δ(x− xo)dx = f(xo). (1.21)

The above relation is called sifting property. The Dirac delta function can also
be loosely considered as a “function” with the following properties:

δ (x− xo) =

{

∞, x = xo

0, otherwise
and

∫

∞

−∞

δ (x− xo) dx = 1. (1.22)
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In the above, ∞ is not a unique value; thus, δ(x − xo) is not a function in the
conventional sense. Derivatives of Dirac delta function have following opera-
tions:

(f(x), δ′(x− xo)) =

∫

∞

−∞

f(x)δ′(x− xo)dx

= f(x)δ(x− xo)|
∞

−∞
−

∫

∞

−∞

f ′(x)δ(x− xo)dx

= − f ′(xo), (1.23)

(f(x), δ′′(x− xo)) = f ′′(xo), (1.24)

...
(

f(x), δ(n)(x− xo)
)

= (−1)
(n)

f (n)(xo), n = 0, 1, 2, . . . . (1.25)



6 CHAPTER 1. PRELIMINARIES



Chapter 2

Introduction to Mechanics
of Materials

2.1 Discrete and continuum mechanics

Mechanics is a branch of physics that describes how a physical body displaces or
deforms under an external influence, or force. A body consists of materials that
exhibit homogeneous properties across various domains, including mechanical
(our primary focus), thermal, electromagnetic, and chemical properties. How-
ever, homogeneity is a scale-dependent concept.

For instance, concrete is considered homogeneous in terms of strength when
used as a construction material. Yet, at a finer scale, it comprises cement and
gravel, which themselves are heterogeneous at the atomic level (Figure 2.1).

(b)(a)

Figure 2.1: Homogeneity of materials. (a) Continuum and atomic struc-
ture. (b) CSIRO’s Parkes radio telescope (https://en.wikipedia.org/wiki/
Radio_telescope).

Readers may already be familiar with discrete mechanics, particularly lattice
models composed of networks of masses, springs, and other discrete elements. In
these lecture notes, we consider a deformable body whose material points occupy
a continuous domain, i.e., a continuum, with mechanical properties distributed
throughout the body. Physical quantities such as displacement, strain, and
stress vary spatially and are expressed as functions of position. Consequently,
physical phenomena are governed by differential equations rather than algebraic
equations.

As an example, Figure 2.2 compares a spring system with a bar problem.

7
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The spring problem can be formulated as follows:
Given a spring constant k ∈ R and an external force F ∈ R, find the dis-

placement x ∈ R that satisfies the equilibrium equation:

kx− F = 0. (2.1)

The solution to this algebraic equation is given by:

x =
F

k
. (2.2)

On the other hand, the bar problem is formulated as follows:
Given the axial rigidity EA (x) : R → R, an external load f (x) : R → R,

and a force F ∈ R applied on the boundary, find the displacement u (x) : R → R

that satisfies the governing equation and boundary conditions:

d

dx

[

EA
du

dx

]

+ f = 0, x ∈ (0, 1), (2.3)

u(0) = 0, (2.4)

EA
du

dx

∣

∣

∣

∣

x=1

= F. (2.5)

Here, f represents a distributed force applied within the domain (0, 1), while
F is an external force prescribed on the boundary. The axial rigidity EA is the
product of the Young’s modulus E and the cross-sectional area A.

The solution is obtained by integrating the governing equation twice and
determining the two integration constants using the boundary conditions. If
f = 0 and EA = const., integrating twice yields:

EAu = C0x+ C1. (2.6)

Applying the first boundary condition gives C1 = 0. Enforcing the second
boundary condition results in C0 = F , leading to the solution:

u (x) =
F

EA
x. (2.7)

Intuitively, each material point experiences the same internal pulling force
and undergoes uniform expansion. The displacement u(x) at position x is the
cumulative result of this expansion, producing a linearly increasing function.
This result is consistent with expectations. If we evaluate the displacement
at the end of the bar and set EA = k, we recover the solution for the spring
problem:

u(1) =
F

EA
=

F

k
. (2.8)

In these lecture notes, we will discuss such problems more rigorously. It is
important to note that the framework presented here is not derived from first
principles. Instead, it provides useful models for describing physical phenomena.
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(b)(a)

Figure 2.2: Discrete and continuum mechanics. (a) Spring model. (b) Bar
model.

2.2 Fundamental principles of mechanics

We are concerned with how a body deforms when it is subjected to a force.
Thus, we need to study: forces, deformations, and their relationship. The study
of deformation without considering forces is called kinematics, which is purely
geometric in nature. The conservation laws or balance laws govern the study of
forces. Finally, the constitutive relations establish the link between forces and
deformations, completing the analysis.
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Chapter 3

Forces and Moments

3.1 Force

In mechanics of materials, we have two different types of forces: a contact force
due to a direct contact between two objects and a force between physically
separted objects such as electromagnetic and gravitational forces.

Force is the cause of the deformation and motion. It takes a form of a vector;
thus, magnitude and direction are required to describe a force. We assume
linearity among multiple forces, i.e., more than two forces can be added and
considered as a single force when they are applied at the same point (Figure 3.1).

Figure 3.1: Vector summation of forces.

The unit newton (N) is defined as that force which gives an acceleration of
1 m/s2 to a mass of 1 kg.

3.2 Moment of a force

The moment, or torque, of a force rotates a body about the reference point or,
in statics, it twists or bends a body. Let a force F acting on a position p and o

denotes a reference point. The displacment vector between o and p is denoted
by r = p − o. Then, the moment of a force about the point o is defined as
(Figure 3.2)

M = r × F . (3.1)

In the above, the magnitude of the moment is the magnitude of the force times
the distance between o and the line of P , i.e., |M | = h |F |.

The moment M is also a vector quantity perpendicular to the plane deter-
mined by r and F . Thus, when there is several forces, the total moment about

11
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Figure 3.2: Moment of a force.

a point o is obtained as

N
∑

i=1

M i = ri × F i = r1 × F 1 + r2 × F 2 + . . .+ rN × FN . (3.2)

The corresponding unit is Newton meter (Nm).

3.3 Equilibrium

In statics, the Newton’s law of motion implies that the sum of forces is zero.
We say that the forces are balanced or are in equilibrium.

Given a set of forces acting on different positions, the two necessary condi-
tions for equalibrium are:

0 =

N
∑

i=1

F i = F 1 + F 2 + . . .+ FN and (3.3)

0 =

N
∑

i=1

ri × F i = r1 × F 1 + r2 × F 2 + . . .+ rN × FN . (3.4)

In the above, each moment must be defined about the same point.

3.4 Freebody diagram

Freebody diagrams are graphical representations of an object and all forces
acting upon on the object (Figure 3.3). Any supports can be replaced by reaction
forces. In addition, a subset of an object can be considered in separate from the
whole object when the influences of the removed parts are replaced by internal
forces. Importantly, all forces, translational and rotational, must be balanced
for all versions of freebody diagrams.

Determinate structures can be easily analyzed by freebody diagrams. First,
we identify all unknowns, i.e., reaction forces, based on the type of supports, or
boundary conditions. Second, we calculate reaction forces from the equations
we have such as balance of translational and rotational forces. We can determine
internal forces by applying the aforementioned process to a specific section of
the structure, which is sliced at the desired location.
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(a) (c)(b)

Figure 3.3: Freebody diagrams. (a) A potato under external loads. (b) A
support replaced by a reaction force. (c) A sliced potato showing internal forces.
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Chapter 4

Stress and Strain

4.1 Stress and Strain in General

Traction, or stress vector, is a vector-valued quantity defined on the surface of
an object or internally on a cross-section of its subdomain. For example, when
a force F is uniformly distributed over an area A, the traction T applied on the
surface is given by

T =
F

A
. (4.1)

Consequently, traction has units of newtons per square meter (N/m2), or pascals
(Pa). Note that the above expression is valid only for a uniformly distributed
force; otherwise, in general (Figure 4.1),

T = lim
∆A→0

∆F

∆A
or F =

∫

A

T dA. (4.2)

A traction vector can be decomposed into three components: one normal to the
surface, called the normal stress, and two tangential to the surface, called the
shear stresses.

Figure 4.1: Traction and its components.

In general, traction T does not act in the direction of n, i.e., the normal
vector of the cross-section; however, it does depend on n. Therefore, there exists

15
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a stress tensor σ such that

T (n) = σn or





Tx

Ty

Tz



 =





σxx σxy σxz

σyx σyy σyz

σzx σzy σzz









nx

ny

nz



 . (4.3)

Note that the stress tensor is symmetric, i.e., σij = σji, or σxy = σyx, σxz = σzx,
and σyz = σzy, which is guaranteed by the balance of angular momentum. The
existence of the stress tensor is derived from the balance laws and Cauchy’s
theorem, which are beyond the scope of these notes.

Strain ε is another tensor-valued quantity that represents how an infinites-
imal element deforms due to stress. More rigorously, it is the spatial rate of
displacement u = (ux, uy, uz). In linear elasticity, strain is the symmetric part
of the displacement gradient, i.e.,

ε =





εxx εxy εxz
εyx εyy εyz
εzx εzy εzz



 =gradsym.u

=
1

2

[

(gradu) +
1

2
(gradu)

T

]

=









∂ux

∂x
1
2

(

∂ux

∂y +
∂uy

∂x

)

1
2

(

∂ux

∂y +
∂uy

∂x

)

∂uy

∂y
1
2

(

∂uy

∂z + ∂uz

∂y

)

sym. ∂uz

∂z









.

(4.4)

Thus, similarly to stresses, strains are symmetric, i.e., εij = εji. Note that rigid
translations and rotations do not induce stress. Therefore, they are removed
from the strain by taking the gradient of the displacement and subsequently
extracting its symmetric part.

Stress and strain are related via a constitutive relation. In linear elasticity,
this relation is governed by Hooke’s law:

σ = C [ε] = C : ε or, in components, σij = Cijklεkl. (4.5)

Here, C is the elasticity tensor, a rank-four tensor mapping a rank-two tensor to
another rank-two tensor. The operation of the rank-four tensor on a rank-two
tensor is defined by a double contraction, denoted by : .

The general elasticity tensor in three dimensions has 3 × 3 × 3 × 3 = 81
components. However, certain symmetries simplify the relation, resulting in

σ = C : ε = 2µε+ λ tr(ε)I. (4.6)

This relation is characterized by only two parameters, λ and µ, known as the
Lamé parameters. These parameters can be expressed in terms of a different set
(E, ν) as follows:

λ =
Eν

(1 + ν)(1− 2ν)
, (4.7)

µ =
E

2(1 + ν)
. (4.8)
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Here, ν denotes the Poisson’s ratio, a strictly positive quantity (0 < ν < 1)
that measures the extent of lateral expansion or contraction in response to axial
loading. For a prismatic bar, Poisson’s ratio is defined as (Figure 4.2)

ν = −
lateral strain

axial strain
. (4.9)

Figure 4.2: Poisson’s ratio. ε denotes lateral strain and ε′ denotes axial strain.

Another important classification is isotropy, which refers to materials ex-
hibiting identical behavior regardless of direction. In contrast, anisotropy de-
scribes materials whose properties depend on direction. Note that an anisotropic
medium may still be homogeneous.

Consider an infinitesimal cubic element subjected to unidirectional tensile
loading (Figure 4.3). The initial volume is set to V = 1. Assuming isotropy and
a uniform Poisson’s ratio, the deformed volume V ′ is given by

V ′ = (1 + ε)(1− νε)2

= (1 + ε)(1− 2νε+ ν2ε2)

= 1− 2νε+ ε+O(ε2). (4.10)

The resulting dilation is measured by

∆V

V
= (1− 2ν)ε. (4.11)

Such a change in volume is fully recovered in elastic deformation but not in
plastic deformation.

We will discuss the general properties of stress and strain in more detail later.
First, let us familiarize ourselves with special cases through simpler examples.
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Figure 4.3: Dilation. (a) Before deformation. (b) After deformation.

4.2 Normal Stress and Strain

Consider a prismatic bar subjected to a force applied normal to the centroid
of the cross-section (Figure 4.4). The corresponding normal stress is readily
obtained as σ = F/A, which remains constant across cross-sections at different
positions x.

Figure 4.4: Prismatic bar in tension

The standard sign convention for normal stress is to assign a positive value
to tensile stresses and a negative value to compressive stresses. However, al-
ternative conventions may be adopted. For instance, compressive stresses are
often considered positive in soil mechanics, as soils exhibit limited resistance to
tension.

It is intuitively expected that the total elongation δ is uniformly distributed
along x. The elongation per unit length is termed the normal strain, and is
given by

ϵ =
δ

L
. (4.12)

As implied above, strain is a dimensionless quantity.
From the earlier discussion, the elongation was computed using the differ-

ential relation δ = FL/(EA), yielding the strain ε = F/(EA). This leads to
Hooke’s law in the form:

σ = Eε. (4.13)

As mentioned, the uniform normal stress and strain are predicated on the
assumption that the force acts through the centroid of the cross-section and in
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the direction of n. A more rigorous statement is that when a uniform normal
stress exists, an effective force may be assumed to act at the centroid (xo, yo)
of the cross-section, where

xo =

∫

x dA

A
and yo =

∫

y dA

A
. (4.14)

This expression for the centroid is derived from the internal moment relations:

Mx = Fyo =

∫

σy dA, (4.15)

My = Fxo =

∫

σx dA. (4.16)

TODO: Computational examples on normal stress and strain;
Poisson’s ratio and lateral strain
See examples in [Goodno and Gere, 2017].

4.3 Stress-strain relation

The previous discussion assumed a linear relationship between stress and strain.
However, more complex material behavior can be observed experimentally us-
ing a tensile testing machine. A specimen is placed between two grips and
subjected to tensile loading, while the machine records the resulting deforma-
tion (Figure 4.5).

(a) (b) (c) (d)

Figure 4.5: Tensile testing machine. (a) Machine. (b) Machine with a sample.
(c) Strain meter. (d) After fracture.

Nominal stress is calculated by dividing the applied force by the original
cross-sectional area, whereas the true stress is defined based on the current, or
deformed, cross-sectional area at the point of failure:

σnominal =
F

Ainitial
, (4.17)

σtrue =
F

Acurrent
. (4.18)

Under a tensile force, a specimen exhibits a noticeable reduction in its cross-
sectional area as it approaches the ultimate stress. This phenomenon is referred
to as necking. As a result, the true stress is generally greater than the nominal
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stress. Similarly, nominal strain is computed by dividing the elongation by the
initial gauge length, whereas true strain is based on the current, reduced gauge
length.

εnominal =
δ

Linitial
, (4.19)

εtrue =
δ

Lcurrent
. (4.20)

Figure 4.6 illustrates a typical stress-strain relationship. The range from O
to A represents the linear region, corresponding to elastic behavior. The stress
at point A is called the proportional limit, while the stress at point B is referred
to as the yield stress. Between B and C, the material deforms without an
increase in load—this is termed perfect plasticity or yielding. Strain hardening
occurs between the yield stress and the ultimate stress, caused by changes in the
material’s crystalline structure. After reaching the ultimate stress, a reduction
in applied load is observed up to failure, primarily due to necking, while the
true stress continues to increase (as indicated by the dashed line).

Figure 4.6: Stress-strain diagram (not to scale). Nominal stress is shown as a
solid line and true stress as a dashed line.

Elastic recovery is observed when unloading occurs before the specimen
reaches the yield stress. In structural design, materials are generally assumed to
remain within the elastic region throughout their service life. Unloading beyond
the yield point, however, results in permanent deformation, known as residual
strain.

A material is described as ductile if it exhibits a large region of plastic strain
(e.g., steel). Conversely, materials such as concrete are generally brittle, showing
negligible plastic strain before failure (Figure 4.8).
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Figure 4.7: Elastic and partially elastic behaviors.

Figure 4.8: Stress-strain curves of brittle and ductile materials.
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4.4 Time-dependent Stress-Strain Relation

Strictly speaking, stress-strain responses are not always instantaneous and may
not be local in time—although such effects are often neglected in many appli-
cations. When time dependency is significant, the constitutive relation can be
expressed by a convolution integral, for example:

σ(t) = C(t) [ε(t)] = C(t) ∗ ε(t)

=

∫ t

−∞

C(t− τ) : ε(τ) dτ. (4.21)

Thus, the response of stress and strain depends on their entire history. Rep-
resentative examples include: 1) Viscoelasticity, where stress depends on the
history of the strain rate; 2) Creep, where strain increases under constant stress;
and 3) Relaxation, where stress decreases under constant strain. Additionally,
non-instantaneous responses become necessary in relativistic elasticity.

Causality requires C(t) to be single-sided, i.e., C(t) = 0 for t < 0 (Fig-
ure 4.9); hence, the upper bound of the integral (4.21) becomes t. In Fig-
ure 4.9(b), the support of the function is approximately limited to the interval
(0, to). In such cases, the domain of the convolution integral can be approxi-
mated by (t− to, t).

Further reduction of the support to a single point at t = 0, modeled by a
Dirac delta function δ(t), implies an instantaneous and local response. This
recovers Hooke’s law (4.5).

Figure 4.9: Causal (single-sided) functions. (a) General causal function. (b)
Causal function with a local support.

4.5 Shear Stress and Strain

Thus far, we have considered normal stress, which acts perpendicular to a sur-
face. In contrast, shear stress acts tangentially to a surface.

Figure 4.10 illustrates an example of single shear, involving one shearing
cross-section. The actual distribution of shear stress across the section is gener-
ally difficult to determine analytically. Instead, we use the average shear stress,
given by:

τaverage =
V

A
, (4.22)

where V = F is the shear force and A is the cross-sectional area.
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Figure 4.10: Example of single shear. (a) Bolted connection in single shear. (b)
Cross-sectional view. (c) Freebody diagram of bolt.

Figure 4.11 presents the case of two shearing cross-sections, known as double
shear. In this scenario, each surface carries half the load, resulting in

τaverage =
F

2A
. (4.23)

Figure 4.11: Example of double shear. (a) Bolted connection in double shear.
(b) Cross-sectional view. (c) Freebody diagram of bolt.

The above two cases are examples of direct shear, where the forces act di-
rectly to cut through the material. Next, we consider a case of pure shear (Fig-
ure 4.12). Assuming uniform shear stresses on all sides, we can demonstrate
that the shear stresses on opposite faces are equal, i.e., τ1 = τ ′1 and τ2 = τ ′2.
This result follows from the balance of forces:

τ1bc− τ ′1bc = 0. (4.24)

Additionally, the balance of moments yields

a · τ1bc− c · τ2ab = 0, (4.25)
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which implies

τ1 = τ2. (4.26)

These results imply the symmetry of the stress tensor, i.e., σij = σji. In
summary: 1) Shear stresses on opposite faces of an element are equal in magni-
tude and opposite in direction; 2) Shear stresses on adjacent faces are equal in
magnitude and directed along the shared edge.

Based on these observations, the following sign convention for shear stress
is adopted: a shear stress on a positive face is considered positive if it acts in
the direction of the coordinate axes and a shear stress on a negative face is
considered positive if it acts in the direction opposite to the coordinate axes.
Here, a positive face is one whose outward normal vector is aligned with the
positive direction of the coordinate axes.

Figure 4.12: Infinitesimal element subjected to pure shear.

The corresponding strain is illustrated in Figure 4.13. The engineering shear
strain γ measures the angular distortion of the element. It is defined as twice
the (tensorial) shear strain:

γxy = 2εxy. (4.27)

The sign convention for shear strain assigns positive values when the angle
between positive faces decreases, and negative values otherwise.

Hooke’s law for shear stress and strain is given by

τ = Gγ. (4.28)

Here, G is the shear modulus of elasticity, which can be expressed in terms of
Young’s modulus E and Poisson’s ratio ν as

G =
E

2(1 + ν)
= µ. (4.29)

TODO: Computational examples on simple and pure shear
See examples in [Goodno and Gere, 2017].
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Figure 4.13: Strain due to pure shear. (a) Engineering strain and angular
distortion. (b) Engineering strain vs. tensorial strain.
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Chapter 5

Axial Load

5.1 Assumptions

We assume Saint-Venant’s principle [Hibbeler, 2010]:

The stress and strain produced at points in a body sufficiently removed from
the region of external load application will be the same as the stress and strain
produced by any other applied external loading that has the same statically
equivalent resultant and is applied to the body within the same region.

TODO: illustration on Saint-Venant’s principle
See corresponding section in [Hibbeler, 2010].

In the scope of axial members, we assume a pure normal stress σ = F/A,
i.e.,

σ =





σ 0 0
0 0 0
0 0 0



 . (5.1)

The Hooke’s law expressed in terms of Young’s modulus E and Poisson’s ratio
ν reads

σ =
E

1 + ν

(

ε+
ν

1− 2ν
tr (ε) I

)

. (5.2)

or, inversely,

ε =
1 + ν

E
σ −

ν

E
tr (σ) I. (5.3)

Then,

ε =





σ
E 0 0
0 −ν σ

E 0
0 0 −ν σ

E



 . (5.4)

let ux = u (x) depends only on x, we have

σ =Eε and (5.5)

ε =
du

dx
. (5.6)

27
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5.2 Governing equation

We now continue our discussion of a prismatic bar subjected to axial loading,
but in a more rigorous manner, by starting with the derivation of bar equation.

Consider an infinitesimally small element subjected to an external axial load
f (Figure 5.1). The balance of force reads

0 =
∑

F = −F + f∆x+ F +∆F. (5.7)

By taking the limit of ∆x → 0, we have

0 = lim
∆x→0

(

∆F

∆x
+ f

)

⇒
dF

dx
= −f. (5.8)

Thus, we have the relation between the external load f and the internal axial
force F .

Figure 5.1: Infinitesimally small element for bar equation.

Let u denote the axial displacement; then, the strain-displacement relation
is given by

ε =
du

dx
. (5.9)

We assume Hooke’s law σ = Eε for the constitutive relation, which gives

σ = E
du

dx
. (5.10)

Then, we compute the axial force by integrating the normal stress over the
cross-section, i.e.,

F =

∫

A

σdA =

∫

A

E
du

dx
dA = E

du

dx

∫

A

dA = EA
du

dx
. (5.11)

Thus, we derived the bar equation as

d

dx

[

EA
du

dx

]

+ f = 0. (5.12)

The governing equation must be accompanied by boundary conditions. Here,
we require two boundary conditions because the highest order of derivative is
second. For example, the boundary conditions for a bar with fixed supports
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at both ends are given by homogeneous Dirichlet boundary condition (Fig-
ure 5.2(a)), i.e.,

u|x=0 = 0 and u|x=L = 0. (5.13)

Here, displacement u is constrained to be zero at both ends. The corresponding
forces are unknown and should be determined by solving the given problem.

If the fixed support is removed on the right end x = L, the force is known
to be zero, while the corresponding displacement is unknown. We say that we
have homogeneous Neumann boundary condition at x = L (Figure 5.2(b)), i.e.,

u|x=0 = 0 and EA
du

dx

∣

∣

∣

∣

x=L

= 0. (5.14)

Inhomogeneous boundary conditions are possible when a specific value is
assigned, such as

u = uo or EA
du

dx
= F. (5.15)

(b)(a)

Figure 5.2: Two types of supports and boundary conditions. (a) Fixed ends at
x = 0 and x = L (homogeneous Dirichlet condition at both boundaries). (b)
Free end at x = L (homogeneous Neumann condition at the right boundary).

For example, consider a bar with fixed ends subjected to a distributed load
f , i.e.,
Given a constant axial rigidity EA and an external load f (x) = fox (L− x) /L2,
find the displacement u (x) such that

d

dx

[

EA
du

dx

]

+ f =0, x ∈ (0, L), (5.16)

u (0) = u (L) = 0. (5.17)

Integrating the governing equation, we have

EA
du

dx
=

fo
L2

1

3
x3 −

fo
L2

1

2
x2L+ C1 and (5.18)

EAu =
fo
L2

1

12
x4 −

fo
L2

1

6
x3L+ C1x+ C2. (5.19)

Then, the two boundary conditions give

u (0) = 0 ⇒ C2 = 0 and (5.20)

u (L) = 0 ⇒ foL
2

(

1

12
−

1

6

)

= −C1L ⇒ C1 =
foL

12
. (5.21)
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Thus, we have

u =
fo

12EAL2

(

x4 − 2Lx3 + L2x
)

(5.22)

or

u

L
=

foL

12EA

[

( x

L

)4

− 2
( x

L

)3

+
( x

L

)

]

. (5.23)

Figure 5.3: Bar with fixed ends subject to a spatially varying external load.

5.3 Statically determinate structure

We say that a structure is statically determinate when a problem can be ana-
lyzed by freebody diagrams. Namely, the reaction forces are fully determined
by investigating equilibrium equations of a freebody diagram without a need of
solving differential equation.

Consider a bar with a fixed end at x = 0 and a free end at x = L =
L1 + L2 + L3. The bar is subjected to three external loads −FB , FC , and FD,
respectively at x = L1, x = L1 + L2, and x = L.

Figure 5.4: Statically determinate bar with three point loads.

The reaction force RA at x = 0 is calculated by

0 =
∑

F = −RA − FB + FC + FD ⇒ RA = FC + FD − FB . (5.24)

Repeating the same analysis for freebody diagrams with different cross-sectional
locations (Figure 5.5), we have

F1 =FC + FD − FB , (5.25)

F2 =FC + FD, and (5.26)

F3 =FD. (5.27)
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Then, corresponding elongation at each segment reads

δ1 =
F1L1

EA1
= (FC + FD − FB)

L1

EA1
, (5.28)

δ2 =
F2L2

EA2
= (FC + FD)

L2

EA2
, and (5.29)

δ3 =
F3L3

EA3
= FD

L3

EA3
, (5.30)

where the total elongation is δ = δ1 + δ2 + δ3.

(b)

(a)

(c)

(d)

Figure 5.5: Freebody diagrams and axial force diagram. (a),(b),(c) Freebody
diagrams with different cross-sections for calculating axial forces. (d) Axial force
diagram.

Next, consider a case with spatially varying axial rigidity EA (x). u = 0 at
x = 0 and EA(du/dx) = F at x = L. From the equilibrium equation, we have

RA = −F. (5.31)

Here, we have a constant axial force throughout the domain. Then, from the
relation F = EA(du/dx), we have

u (x) =

∫ x

0

F

EA (ξ)
dξ. (5.32)

5.4 Statically indeterminate structure

A statically indeterminate structure is a structure that cannot be analyzed by
free body diagrams, i.e., by equilibrium equations. Such a problem occurs when
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the number of unknowns is greater than the number of equilibrium equations.
Thus, we need additional equations to determine a compatibility condition.

Consider an example shown in Figure 5.6. Here, we have two axial members
of different EA and L attached to each other. The two ends are fixed, i.e.,
u(0) = u(L) = 0, L = L1 + L2. Force F is applied at the interface between
the two members. We identify two reaction forces, RA and RB , when the two
supports are removed (Figure 5.6(b)). The corresponding equilibrium equation
reads

−RA + F +RB = 0. (5.33)

Here, we have two unknowns but only one equation; thus, the problem is un-
derdetermined or statically indeterminate. We may try a different version of
the free body diagram as shown in Figure 5.6(c). We have three equilibrium
equations:







−RA + FL
C = 0

−FL
C + F + FR

C = 0
−FR

C +RB = 0
(5.34)

The above problem is still not solvable because we have four unknowns, RA,
RB , F

L
C , and FR

C . Again, we are short of one equation.

(b)(a)

(c)

Figure 5.6: Statically indeterminate structure. (a) Structure and forces. (b)
Freebody diagram when supports are removed. (c) Freebody diagram when two
members are separated.

However, we know that the total length of the structure must be remained
unchanged due to the given boundary conditions. Note that each member may
deform due to the internal forces. Then, we can state that the sum of elongation
of two members is zero, which gives the compatibility condition:

δ1 + δ2 = 0. (5.35)

Here, the elongation of each member is denoted by δ1 and δ2, respectively. The
internal forces at each member are constant by RA and RB , respectively; (5.35)
becomes

RAL1

EA1
+

RBL2

EA2
= 0. (5.36)
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Then, we have

RA =F
L1

EA1

L1

EA1

+ L2

EA2

and (5.37)

RB = − F
L2

EA2

L1

EA1

+ L2

EA2

. (5.38)

Next, consider two members being pulled by a force F , where one end is fixed
and the other end are constrained by a rigid plate so that the elongation of the
two members become identical (Figure 5.7). Here we have two four unknowns
and three equations:







−R1
A +R1

B = 0
−R2

A +R2
B = 0

−R1
B −R2

B + F = 0
. (5.39)

Thus, the given structure is statically indeterminate. As implied above, the
corresponding compatibility equation is

δ1 = δ2 (5.40)

or

R1
AL

EA1
=

R2
AL

EA2
. (5.41)

Then, we have

R1
A = R1

B =F
EA1

EA1 + EA2
and (5.42)

R2
A = R2

B =F
EA2

EA1 + EA2
. (5.43)

(a)

(b)

Figure 5.7: Another example of statically indeterminate structure. (a) Structure
and forces. (b) Freebody diagram.

5.5 Thermal effects and misfits

Here, we consider a uniform temperature change within a member denoted by
∆T . Then, the strain due to the temperature is given by

εT = α (∆T ) , (5.44)
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where α is the coefficient of thermal expansion. Then, we have δT = εTL
when the length of the member is L. Statically determinate structures will
freely expand without inducing internal forces. However, thermal expansion
may constrained for indeterminate structures and causes internal forces.

For example, consider a case shown in Figure 5.8. Here, the structure is
constrained so that the total elongation is zero. The compatibility equation
reads

δT + δS = 0, (5.45)

where δT = α (∆T )L is the thermal expansion and δS = FL/ (EA) is the
elongation due to the internal force F . Then, we have

F = −α (∆T )EA. (5.46)

The corresponding reaction forces at two ends has the same magnitude above
in the directions of compression.

Figure 5.8: Uniform temperature change.

Misfits, or fabrication errors, are treated the same way as the thermal effects
with given amount of strain εE = δE/L, where δE is the fabrication error in
length.
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Torsion

6.1 Assumptions

Torsional member is easier to describe in cylindrical coordinates (ρ, θ, x):






x = x
y = ρ cos θ
z = ρ sin θ

. (6.1)

In addition to the small strain assumption and Saint-Venant’s principle, we
assume

uρ =0, (6.2)

uθ =φ (x) ρ, and (6.3)

ux =0. (6.4)

Then, the strain components reads

ε =
1

2

[

(gradu) + (gradu)
T
]

=









∂uρ

∂ρ
1
2

(

1
r
∂uρ

∂θ + ∂uθ

∂ρ − uθ

ρ

)

1
2

(

∂ux

∂ρ +
∂uρ

∂x

)

1
ρ
∂uθ

∂θ +
uρ

ρ
1
2

(

∂uθ

∂x + 1
ρ
∂uz

∂θ

)

sym. ∂ux

∂x









=





0 0 0

0 0 1
2ρ

dφ
dx

0 1
2ρ

dφ
dx 0



 (6.5)

Then, from the Hooke’s law, we identify a pure shear, i.e.,

σ =C : ε = 2µε+ λtr (ε) I

=





0 0 0

0 0 µρdφ
dx

0 µρdφ
dx 0



 . (6.6)

In the above, µ = G is the shear modulus.

TODO: three-dimensional figure showing shear stress (pure shear)
See [Hibbeler, 2010].

35
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6.2 Governing equation

We consider a one-dimensional member subjected to a twisting moment, or
torque. Thus, we are interested in finding the angle of rotation φ (x) as opposed
to axial displacement u (x) due to axial forces (Figure 6.1).

(b)(a)

(c)

Figure 6.1: Deformation of a circular bar in pure torsion. (a) Structure and
torsion. (b) Freebody diagram. (c) Angle of rotation.

Consider an infinitesimally small element subjected to an external distributed
moment m (Figure 6.2). The balance of moment reads

0 =
∑

M = −T +m∆x+ T +∆T. (6.7)

By taking the limit of ∆x → 0, we have

0 = lim
∆x→0

(

∆T

∆x
+m

)

⇒
dT

dx
= −m. (6.8)

Thus, we have the relation between the distributed moment m and the internal
twisting moment T .

Figure 6.2: Infinitesimally small element for torsion.

Let φ denote the angle of rotation; then, the strain-displacement relation is
given by

γ = ρ
dφ

dx
. (6.9)

Here, ρ is the distance between a position in a cross-section and its axis and γ is
an engineering shear strain. We assume Hooke’s law τ = Gφ for the constitutive
relation, which gives

τ = Gρ
dφ

dx
. (6.10)
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Then, we compute the twisting moment by integrating the shear stress over
the cross-section, i.e.,

T =

∫

A

τρdA =

∫

A

Gρ2
dφ

dx
dA = G

dφ

dx

∫

A

ρ2dA = GJ
dφ

dx
. (6.11)

Here, J is called the second polar moment of area. Thus, we derived the equation
for torsion as

d

dx

[

GJ
dφ

dx

]

+m = 0. (6.12)

The corresponding Dirichlet and Neumann boundary conditions read, re-
spectively,

φ =φ0 and (6.13)

GJ
dφ

dx
=T. (6.14)

6.3 Pure torsion

Let us revisit the simple case of pure torsion, i.e.,



















d

dx

[

GJ
dφ

dx

]

= 0 x ∈ (0, L)

φ = 0 x = 0

GJ
dφ

dx
= T x = L

. (6.15)

Here, we consider a constant GJ .
Integrating the governing equation, we have

GJ
dφ

dx
=C1 (6.16)

GJφ =C1x+ C2. (6.17)

Then, we determine the two constants from the boundary conditions as

C1 = T and C2 = 0. (6.18)

Thus, we have the solution

φ (x) =
T

GJ
x. (6.19)

The total angle of rotation is given by

ϕ =
TL

GJ
. (6.20)

The above expression implies that the displacement is inversely proportional to
J , which represents a cross-sectional character. Below, we consider two different
cross-sections: (a) circle and (b) circular tube (Figure 6.3).
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The surface element in polar coordinate is dA = ρdρdθ. Then, we have

Jcircle =

∫

A

ρ2dA =

∫ 2π

0

∫ ρ2

0

ρ3dρdθ =
π

2
ρ42 and (6.21)

Jtube =

∫

A

ρ2dA =

∫ 2π

0

∫ ρ2

ρ1

ρ3dρdθ =
π

2

(

ρ42 − ρ41
)

. =
π

2
ρ42
(

1− r4
)

. (6.22)

Here, r = ρ1/ρ2 < 1. Thus, Jcircle and Jtube become similar because r4 ≪ 1.
For example when r = 0.5, we have

Jtube
Jcircle

≈ 0.94. (6.23)

Thus, a thin tube with a larger radius is more economic, uses less material, than
a circular cross-section.

(b)(a)

Figure 6.3: Two cross-sections. (a) Circle. (b) Circular tube.

6.4 Statically indeterminate structure

Similarly to axial load, we could consider determinate and indeterminate struc-
tures under torsion. Here, we seek compatibility conditions in terms of the angle
of rotation.

Consider a bar with fixed ends subjected to two twisting moments (Fig-
ure 6.4(a)). Here, lengths of tree subdomains are L1, L2, and L3, respectively.
The corresponding angle of rotations are respectively denoted by ϕ1, ϕ2, and
ϕ3. Then, we have the equilibrium equations as























−TA + TL
C = 0

−TL
C − TL + TR

C = 0
−TR

C + TL
D = 0

−TL
D + TR + TR

D = 0
−TR

D + TB = 0

(6.24)

and the compatibility equation as

ϕ1 + ϕ2 + ϕ3 = 0. (6.25)

For each subdomain, the twisting moment is constant. Thus, we have

ϕ1 =
T1L1

GJ
, (6.26)

ϕ2 =
T2L2

GJ
, and (6.27)

ϕ3 =
T3L3

GJ
, (6.28)
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where, from the equilibrium equation, T1 = TA, T2 = TA + TL, and T3 =
TA + TL − TR. Next, we plug the above rotation angle into the compatibility
equation, i.e.,

1

GJ
[TAL1 + (TA + TL)L2 + (TA + TL − TR)L3] = 0 (6.29)

or

TA =
TRL3 − TL (L2 + L3)

L1 + L2 + L3
and (6.30)

TB =
TLL1 − TR (L1 + L2)

L1 + L2 + L3
. (6.31)

One possible twisting moment diagram is shown in Figure 6.4(d) when 2L1 =
2L2 = L3 = 2 and 2TL = TR = 2, which gives

T1 =
1

2
, T2 =

3

2
, and T3 = −

1

2
. (6.32)

(a) (b)

(c)

(d)

Figure 6.4: Bar with fixed ends subjected to twisting moments. (a) Structure
and external moments. (b) Freebody diagram when supports are removed. (c)
Freebody diagram showing internal torsional moments. (d) Twisting moment
diagram when 2L1 = 2L2 = L3 = 2 and 2TL = TR = 2.

Consider another example shown in Figure 6.5. Here, the bar is composed
with two different materials and, therefore, different torsional rigidity GiJi,
i = 1, 2. The total twisting moment T is divided by

T = T1 + T2, (6.33)

where T1 acts on the inner core and T2 acts on the shell. We assume the angles of
rotation are identical between the two materials, which gives the compatibility
equation as

ϕ1 = ϕ2. (6.34)
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or

T1L

G1J1
=

T2L

G2J2
. (6.35)

Then, we have

T1 =
TG1J1

G1J1 +G2J2
and (6.36)

T2 =
TG2J2

G1J1 +G2J2
. (6.37)

The corresponding shear strain is computed as

γ = ρ
dφ

dx
= ρ

Tx

G1J1 +G2J2
. (6.38)

Let the radii of the inner core and the outer shell are given by a and b. Then,
the stresses of the core and the shell are

τ1 =G1ρ
Tx

G1J1 +G2J2
, 0 < ρ < a and (6.39)

τ2 =G2ρ
Tx

G1J1 +G2J2
, a < ρ < b. (6.40)

Thus, the shear stress has a jump at the interface ρ = a by

τ2 − τ1 = (G2 −G1)
Ta

G1J1 +G2J2
. (6.41)

However, this result does not mean that stress continuity at the interface is
violated. Note that the continuity must hold across the interface not along the
interface.

TODO: provide figures for the continuity problem.

(b)(a)

Figure 6.5: Bar with fixed-free end subjected to a twisting moment. (a) Struc-
ture and external moments. (b) Cross-section and torsional rigidity GJ .



Chapter 7

Bending

7.1 Assumptions

In addition to small-strain assumption and Saint-Venant’s principle, we adopt
the assumptions of the Euler-Bernoulli beam theory :

• a plane section remains plane after deformation;

• the normal to the plane remains normal; and

• the vertical displacement is uniform across the beam’s depth.

The first and second assumptions imply no shear deformation; thus, no distor-
tion of cross-section. The last assumption implies that there is no Poisson’s
effect, i.e., ν = 0.

The corresponding displacement field reads

ux = −
duy

dx
y, (7.1)

uy =w (x) , and (7.2)

uz =0. (7.3)

In defining ux, y is measured from the neutral axis such that
∫

A
σxxdA = 0.

Then, from the strain-displacement relation, we have

ε =









∂ux

∂x
1
2

(

∂ux

∂y +
∂uy

∂x

)

1
2

(

∂ux

∂z + ∂uz

∂x

)

∂uy

∂y
1
2

(

∂uy

∂z + ∂uz

∂y

)

sym. ∂uz

∂z









=





−d2w
dx2 y 0 0

0 0
sym. 0



 . (7.4)

Then, the only nonzero component of the stress tensor is given by

σxx = Eεxx = −E
d2w

dx2
y. (7.5)

41
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Unfortunately, the above result violates momentum equlibrium at the stress
level, i.e.,

∂σxx

∂x
+

∂σxy

∂y
+

∂σxz

∂z
= 0. (7.6)

Here, σxz = 0 due to the absence of strain or constraints in the z direction. Then,
this implies that σxy must be nonzero to statisfy the above local equilibrium.
However, at the macroscopic level, force equilibrium is satisfied when the stress
components are integrated over the cross-section. Thus, in the absence of axial
force, we require

∫

A

σxx dA = 0. (7.7)

The above determines the location of neutral axis by

0 =

∫

A

σxxdA =

∫

A

−E
d2w

dx2
ydA ⇒

∫

A

ydA = 0. (7.8)

The balance of momentum in
statics reads

divσ + f = 0,

or, in Cartesian,

∂σxx

∂x
+

∂σxy

∂y
+

∂σxz

∂z
+ fx = 0,

∂σyx

∂x
+

∂σyy

∂y
+

∂σyz

∂z
+ fy = 0,

∂σzx

∂x
+

∂σzy

∂y
+

∂σzz

∂z
+ fz = 0.

We will subsequently “correct” the omitted shear stress σxy a posteriori
using the moment equilibrium.

TODO: a figure showing linear normal stress on a cross-section.

7.2 Governing equation

We derive the beam equation from the equilibrium equations of an infinitesimal
element (Figure 7.1). First, we identify the blance of forces and balance of
moment of forces:

0 =
∑

Fy = V − (V +∆V ) + q ·∆x and (7.9a)

0 =
∑

MR = −M + (M +∆M)− V ·∆x−
1

2
q (∆x)

2
. (7.9b)

Then, we take the limit of ∆x → 0 that keeps linear terms only

0 = lim
∆x→0

(

∆V

∆x
− q

)

⇒
dV

dx
= q and (7.10a)

0 = lim
∆x→0

(

∆M

∆x
− V −

1

2
q∆x

)

⇒
dM

dx
= V. (7.10b)

Thus, the above result gives the relation between external load and shear forces
and bending moment, i.e.,

d2M

dx2
=

dV

dx
= q. (7.11)

Next, we consider geometrical quantities w = uy, u = ux, and θ, under defor-
mation. Figure 7.2 shows how the angle θ is related to the normal displacement
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Figure 7.1: Infinitesimal beam element.

u and deflection w. Under a small deformation, we assume that the cross-section
rotates but remains flat; then, we have the following strain-displacement rela-
tion:

lim
∆x→0

∆w

∆x
=

dw

dx
= tan θ (≈ θ)

u = −y tan θ = −
dw

dx
y











⇒ ε =
du

dx
= −

d2w

dx2
y. (7.12)

In the above, ε is the normal strain.

Figure 7.2: Geometrical quantities under deformation.

Then, the final piece we need is the relation between the geometrical quan-
tities and the forces, i.e., the constitutive relation. Here, we use the Hooke’s
law:

σ = Eε = −E
d2w

dx2
y. (7.13)

In the above, σ is the normal stress at the cross-section, where the definition of
moment states

M = −

∫

A

σydA = −

∫

A

EεydA =

∫

A

E
d2w

dx2
y2dA = EI

d2w

dx2
. (7.14)

Here, we introduced the second moment of area I that captures the cross-
sectional information, i.e.,

I =

∫

A

y2dA. (7.15)
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Here, y is measured from the neutral axis of the cross-section. Then, we have
derived the beam equation:

d2

dx2

[

EI
d2w

dx2

]

= q. (7.16)

The above beam equation is a fourth-order differential equation. Thus, the
Dirichlet boundary conditions involve with deflection w and its derivative, i.e.,
slope, dw/dx, while the Neumann boundary conditions involve with moment and
shear force, i.e, EId2w/dx2 and (d/dx)(EId2w/dx2). We require four boundary
conditions to determine the solution w (x).x

In summary, we have

d2

dx2

[

EI
d2w

dx2

]

− q = 0, x ∈ (0, L), (7.17)

where w is the deflection, q is the distributed load per unit length, and I the
second moment of area. The derivatives of w represents the following physical
quantities (for a small w):

θ =
dw

dx
(slope or deflection angle), (7.18)

M =EI
d2w

dx2
(bending moment), and (7.19)

V =
d

dx

[

EI
d2w

dx2

]

(shear force). (7.20)

The above equations are based on the right-handed coordinate system; for
the left-handed coordinate system, the governing equation remains the same
but moment and shear force are described by M = −EId2w/dx2 and V =
−(d/dx)(EIdw2/dx2).

7.3 Supports and boundary condition

Various types of supports are translated in different boundary conditions (Fig-
ure 7.3). Common support types and their characteristics are:

• Fixed support: all motions, horizontal, vertical, and rotational, are con-
strained. Thus, we expect horizontal, vertical, and moment reaction
forces.

• Hinge support: horizontal and vertical motions are constrained but ro-
tational motions are allowed. We expect horizontal and vertical reaction
forces.

• Roller support: vertical motions are constrained, while other motions are
allowed. We expect a vertical reaction force only.
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(a) (b) (c)

Figure 7.3: Three types of support. (a) Fixed support. (b) Hinge support. (c)
Roller support (bridge over a tennis court at Seoul National University). Images
courtesy of Hae Sung Lee.

7.4 Sign Convention

The right-handed coordinate system is the most commonly used convention.
However, the left-handed coordinate system can also be useful, particularly
when assigning positive values to downward displacements, as typically occurs
under gravitational loading.

Sign conventions for internal forces may also differ. In these notes, we adopt
the convention illustrated in Figure 7.4.

(a) (b)
Axial force

Shear force

Bending moment

Torsional moment

Right-handed
coordinate system

Left-handed 
coordinate system

Figure 7.4: Sign conventions. (a) Coordinate systems. (b) Internal forces acting
on an infinitesimally small element. Arrows indicate positive directions.
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7.5 Cantilever beam

Consider a cantilever beam (Figure 7.5) subject to a uniform distributed load
−q (downward):



















































d2

dx2

[

EI
dxw

dx2

]

= −q x ∈ (0, L)

w = 0 x = 0
dw

dx
= 0 x = 0

EI
d2w

dx2
= 0 x = L

d

dx

[

EI
d2w

dx2

]

= 0 x = L

. (7.21)

Let EI = constant, we have

d

dx

[

EI
d2w

dx2

]

= − qx+ C1, (7.22)

EI
d2w

dx2
= −

q

2
x2 + C1x+ C2, (7.23)

EI
dw

dx
= −

q

6
x3 + C1

1

2
x2 + C2x+ C3, and (7.24)

EIw = −
q

24
x4 + C1

1

6
x3 + C2

1

2
x2 + C3x+ C4. (7.25)

Applying the boundary conditions, we have

C1 = qL, (7.26)

C2 = −
qL2

2
, and (7.27)

C3 =C4 = 0. (7.28)

Then, the deflection is given by

EIw (x) = −
q

24
x4 +

qL

6
x3 −

qL2

4
x2. (7.29)

The maximum deflection at x = L is wmax = −qL4/(8EI).
The deflection is inversely proportional to EI, which is called flexural rigid-

ity. While the Young’s modulus E represents a material property, the second
moment of area I contains the geometrical information. For example (Fig-
ure 7.6):

• a rectangular cross-section of width b and height h

I =

∫

A

y2dA =

∫ b/2

−b/2

∫ h/2

−h/2

y2dydz =
bh3

12
. (7.30)

• a rectangular cross-section of width h and height b

I =

∫

A

y2dA =

∫ h/2

−h/2

∫ b/2

−b/2

y2dydz =
b3h

12
. (7.31)
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(a)

(d)

(c)

(b)

Figure 7.5: Cantilever beam. (a) Structure and load. (b) Freebody diagram.
(c) Shear force diagram. (d) Bending moment diagrma.

• an I-beam with the flange thickness tf and the web height hw.

I =
bh3

12
−

(b− tw) (h− 2tf )
3

12
. (7.32)

(b)(a) (c)

Figure 7.6: Second moments of area for various cross-sections. (a),(b) Rectan-
gualar. (c) I-beam.

7.6 Statically indeterminate structure

Similarly to the previous sections, we exploit the linearity of our model. For
example, a two-span continuous beam with three supports (Figure 7.7(c)) is
statically indeterminate because there are three unknowns but only two equa-
tions.

However, if we are given the mid-point deflections of Figure 7.7(a) and (b),
we can use the superposition of the two problems, i.e., apply the compatibility
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equation. Let the two deflections be denoted by

δ(a) = − 5q(2L)4/(384EI) and (7.33)

δ(b) = − p(2L)3/(48EI), (7.34)

respectively. The compatibility equation then reads

δ(a) + δ(b) = 0. (7.35)

Solving the above equation yields p = −5qL/4 (upward), which becomes the
reaction force at the mid-support.

(a) (b) (c)

Figure 7.7: Exploiting linearity. (a) A simple beam with a uniform load. (b)
With a concentrated load. (c) A beam with three supports that is a linear
superposition of the two preceding cases.

The two deflections in (7.34) can be obtained by analyzing the two determi-
nate structures. Thus, we can find the bending moments for each case from the
free body diagrams. Then, by integrating twice, we obtain the expressions for
the deflections. For each problem, we require two Dirichlet boundary conditions.

From the free body diagrams (Figure 7.8(b) and (c)), we obtain:

V(a) =
d

dx

[

EI
d2w(a)

dx2

]

= −qx+ qL, (7.36)

M(a) =EI
d2w(a)

dx2
= −

q

2
x2 + qLx, (7.37)

EIθ(a) =EI
dw(a)

dx
= −

q

6
x3 +

qL

2
x2 + C1, and (7.38)

EIw(a) = −
q

24
x4 +

qL

6
x3 + C1x+ C2. (7.39)

The integration constants are determined by the boundary conditions w(a) = 0
at x = 0 and x = 2L:

C1 = −
qL3

3
and C2 = 0. (7.40)

Thus, the deflection is

EIw(a) =−
q

24
x4 +

qL

6
x3 −

qL3

3
x. (7.41)

From the free body diagrams (Figure 7.8(e) and (f)), for 0 < x < L, we
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have:

V(b) =
d

dx

[

EI
d2w(b)

dx2

]

=
p

2
, (7.42)

M(b) =EI
d2w(b)

dx2
=

p

2
x, (7.43)

EIθ(b) =EI
dw(b)

dx
=

p

4
x2 +D1, and (7.44)

EIw(b) =
p

12
x3 +D1x+D2. (7.45)

The integration constants are determined by the conditions w(b) = 0 at x = 0
and θ(b) = 0 at x = L:

D1 = −
pL2

4
and D2 = 0. (7.46)

Here, we use θ(b) = 0 at x = L instead of w(b) = 0 at x = 2L, considering
symmetry about the mid-point. The deflection then reads:

EIw(b) =
p

12
x3 −

pL2

4
x. (7.47)

(d) (e) (f)

(a) (b) (c)

Figure 7.8: Primary structures for Figure 7.7. (a) Structure A and its (b) Shear
force and (c) Bending moment diagrams. (d) Structure B and its (e) Shear force
and (f) Bending moment diagrams.

The corresponding deflection shapes are shown in Figure 7.9. The deflection
of Structure C is the superposition of those of Structures A and B, i.e.,

w(c) = w(a) + w(b)

∣

∣

p=−5qL/4
. (7.48)

We observe symmetry and smoothness in the deflection shapes. The symmetry
is due to the symmetry in geometry and external loading. The smoothness is
related to the integrability of the energy functional, which will be discussed
later, or, physically, it implies deformation without failure.
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(a) (b) (c)

Figure 7.9: Deflection shape for Figure 7.7. (a) Structure A. (b) Structure B.
(c) Structure C.

7.7 Shear stress correction

As previously discussed, the assumptions underlying Euler-Bernoulli beam the-
ory neglect shear stress. However, the omitted shear stress can be estimated a
posteriori from the freebody diagram shown in Figure 7.10.

Figure 7.10: Shear stress in an infinitesimal beam element.

Assuming a constant shear stress τ , the equilibrium condition yields

0 =

∫

A′

σ dA+ τb∆x−

∫

A′

(σ +∆σ) dA, (7.49)

where A′ denotes the portion of the cross-sectional area from y to h/2, and
b = b(y) is the local width of the cross-section. Using the bending stress relation
σ = −My/I, equation (7.49) becomes

0 = −

∫

A′

My

I
dA+ τb∆x+

∫

A′

(M +∆M)y

I
dA

= τb∆x+
∆M

I

∫

A′

y dA. (7.50)

Taking the limit as ∆x → 0, we obtain

τ = lim
∆x→0

1

Ib

∆M

∆x

∫

A′

y dA

=
1

Ib

dM

dx

∫

A′

y dA

=
V

Ib

∫

A′

y dA

=
V Q

Ib
, (7.51)
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where the first moment of area Q is defined as

Q =

∫

A′

y dA. (7.52)

Thus, the shear stress τ at a position (x, y) is expressed as

τ(x, y) =
V (x)Q(y)

I(x)b(y)
, (7.53)

where I and V are functions of x.
For a rectangular cross-section of width b and height h, the shear stress

becomes (Figure 7.11)

τ(y) =
V

Ib

∫

A′

y dA

=
V

I

∫ h/2

y

y′ dy′

=
V

I

[

1

2
y′

2
]h/2

y

=
V

2I

(

h2

4
− y2

)

, −
h

2
≤ y ≤

h

2
. (7.54)

Thus, the shear stress varies quadratically with y, vanishing at the top and
bottom surfaces.

Figure 7.11: Quadratic shear stress in a rectangular cross-section.
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Chapter 8

Tensor Transformations

8.1 Transformation of vectors

We consider a rotational coordinate transformation, specifically a transforma-
tion from one Cartesian coordinate system to another. Figure 8.1 illustrates
various rotational transformations of the form (x, y, z) → (x′, y′, z′).

Figure 8.1(a) depicts a rotation about the z-axis, for which the transforma-
tion is given by

v′ =Rzv or





v′x
v′y
v′z



 =





cos θz sin θz 0
− sin θz cos θz 0

0 0 1









vx
vy
vz



 . (8.1)

Similarly, the transformation matrices for rotations about the y-axis and x-axis
are, respectively,

Ry =





cos θy 0 sin θy
0 1 0

− sin θy 0 cos θy



 and (8.2)

Rx =





1 0 0
0 cos θx sin θx
0 − sin θx cos θx



 . (8.3)

Notice that each entry of the rotation matrix is the inner product of the coordi-
nate axes, i.e., Rij = ex′

i
· exj

. For example, the coordinate axes corresponding
to Rz are

ex′ = ex cos θz + ey sin θz, (8.4)

ey′ = ex (− sin θz) + ey cos θz, and (8.5)

ez′ = ez. (8.6)

Thus, for a general rotational transformation (Figure 8.1(d)), the rotation ma-
trix reads

R =





ex′ · ex ex′ · ey ex′ · ez
ey′ · ex ey′ · ey ey′ · ez
ez′ · ex ez′ · ey ez′ · ez



 . (8.7)

53
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Note that such proper rotation matrices are unitary such that

RTR = RRT = I (8.8)

and orientation preserving, i.e.,

detR = 1. (8.9)

(c)

(a) (b)

(d)

Figure 8.1: Rotational transformation. (a) Rotation about the z axis. (b)
Rotation about the y axis. (c) Rotation about the x axis. (d) General rotational
transformation.

8.2 Transformation of rank-two tensors

We are now ready to transform rank-two tensors, such as stress and strain ten-
sors. The corresponding transformation rule is derived from the transformation
rule for vectors. Consider the transformation of a stress tensor, σ → σ′. From
the definition of the stress tensor, T = σn, where T is the traction vector and
n is the unit normal vector, we have

0 =T − σn

=RTT ′ − σRTn′

=RRTT ′ −RσRTn′

=T ′ − σ′n′. (8.10)

Thus, we have

σ′ = RσRT . (8.11)
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Strain tensors transform similarly, i.e.,

ε′ = RεRT . (8.12)

For example, consider a rotation about the z axis. Then, the transformed
stress tensor reads

σ′ =RzσR
T
z

=





cos θ sin θ 0
− sin θ cos θ 0

0 0 1









σxx σxy σxz

σyy σyz

sym. σzz









cos θ − sin θ 0
sin θ cos θ 0
0 0 1





=





σx′x′ σx′y′ σx′z′

σy′y′ σy′z′

sym. σz′z′



 , (8.13)

where

σx′x′ =
σxx + σyy

2
+

σxx − σyy

2
cos 2θ + σxy sin 2θ, (8.14)

σy′y′ =
σxx + σyy

2
−

σxx − σyy

2
cos 2θ − σxy sin 2θ, (8.15)

σx′y′ = −
σxx − σyy

2
sin 2θ + σxy cos 2θ, (8.16)

σx′z′ =σxz cos θ + σyz sin θ, (8.17)

σy′z′ =σxz (− sin θ) + σyz cos θ, and (8.18)

σz′z′ =σzz. (8.19)

Some useful identities:

sin2 θ =
1− cos 2θ

2
,

cos2 θ =
1 + cos 2θ

2
,

sin 2θ =2 sin θ cos θ.

Under certain conditions, stress or strain tensors may be effectively two-
dimensional. Plane stress refers to the case where σxz = σyz = σzz = 0, while
plane strain occurs when uz = 0 and ∂/∂z = 0, leading to εxz = εyz = εzz = 0.

For example, in plane stress, the above transformation can be illustrated
graphically, as shown in Figure 8.2.

Figure 8.2: Example of Mohr circle when both principal stresses are positive.

The principal stresses, σ1 and σ2, are the maximum and minimum normal
stresses at a given point and occur at a specific orientation θp, which can be
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determined by

0 =
∂σx′x′

∂θ
= − (σxx − σyy) sin 2θp + 2σxy cos 2θp, (8.20)

or

tan 2θp =
σxy

(σxx − σyy) /2
. (8.21)

Then, the principal stresses are

σ1,2 =
σxx + σyy

2
±

√

(

σxx − σyy

2

)2

+ σ2
xy. (8.22)

There is no shear stress when a certain orientation exhibits principal stresses.
On the other hand, the maximum shear stress appears at

0 =
∂σx′y′

∂θ
= − (σxx − σyy) cos 2θ − 2σxy sin 2θ (8.23)

or

tan 2θs = −
(σxx − σyy) /2

σxy
. (8.24)

The corresponding maximum shear stress is

τmax =

√

(

σxx − σyy

2

)2

+ σ2
xy =

σ1 − σ2

2
. (8.25)

Note that the principal stresses are the eigenvalues of the stress tensor, and
the corresponding orientation θp represents the eigenvectors. The eigenvalues
and eigenvectors are defined by

Ax = λx, x ̸= 0. (8.26)

The corresponding eigenvalue decomposition of a real symmetric matrix is given
by

A = RΛRT . (8.27)

Here, Λ = diag {λ1, λ2, . . . , λN} is a diagonal matrix of real-valued eigenvalues
and R is an orthogonal (unitary) matrix whose rows are the eigenvectors.For a general (complex asym-

metric) matrix A, the eigen-
values are complex-valued and
the eigenvectors are not orthog-
onal. Thus, the decomposition
reads

A = PΛP−1.

Then, for the plain stress case, we have
[

σxx − λ σxy

σxy σyy − λ

](

x1

x2

)

=

(

0
0

)

. (8.28)

A non-trivial solution necessitates

0 = det

[

σxx − λ σxy

σxy σyy − λ

]

= (σxx − λ) (σyy − λ)− σ2
xy

=λ2 − (σxx + σyy)λ+ σxxσyy − σ2
xy. (8.29)
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The corresponding solution λ is achieved from the quadratic formula:

λ =
(σxx + σyy)±

√

(σxx + σyy)
2
− 4

(

σxxσyy − σ2
xy

)

2

=
σxx + σyy

2
±

√

(

σxx − σyy

2

)2

+ σ2
xy, (8.30)

which is identical with (8.22).

Let us revisit the case of pure torsion as an example (Figure 8.3). The stress
tensor in Cartesian coordinates is given by

σ =





σxx σxy σxz

σyy σyz

sym. σzz



 =





0 −τ 0
0 0

sym. 0



 . (8.31)

Thus, we have a plain stress case. Then, the pricipal stresses are

σ1,2 = ±τ, (8.32)

where θp = π/4.

(a) (b) (c)

Figure 8.3: Example of stress transformation. (a) Pure torsion. (b) Stress state.
(c) Principal stresses.

The corresponding Mohr’s circle is Figure 8.4.

Figure 8.4: Mohr’s circle for pure torsion.
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8.3 Stress transformation via force equilibrium

In this section, we rederive the stress transformation equations using an alter-
native approach based on the equilibrium of an infinitesimal element.

We consider a rotational transformation under a plain stress assumption as
illustrated in Figure 8.5.

(a) (b)

Figure 8.5: Illustration of plain stress tensors in different coordinate systems.

Figure 8.6(a) shows a triangular element with A as the surface area of the
inclined side. Here, we apply the force equlibrium equations as

0 =
∑

Fx′

=σx′x′A− σxxA cos θ · cos θ − σxyA cos θ · sin θ

− σyyA sin θ · sin θ − σxyA sin θ · cos θ

=σx′x′A− σxxA
1 + cos 2θ

2
− σxyA

sin 2θ

2

− σyyA
1− cos 2θ

2
− σxyA

sin 2θ

2

=σx′x′ −
σxx + σyy

2
−

σxx − σyy

2
cos 2θ − σxy sin 2θ, (8.33)

which yields to (8.14), and

0 =
∑

Fy′

=σx′y′A+ σxxA cos θ · sin θ − σxyA cos θ · cos θ

− σyyA sin θ · cos θ + σxyA sin θ · sin θ

=σx′y′A+ σxxA
sin 2θ

2
− σxyA

1 + cos 2θ

2

− σyyA
sin 2θ

2
+ σxyA

1− cos 2θ

2

=σx′y′ +
σxx − σyy

2
sin 2θ − σxy cos 2θ, (8.34)

which yields to (8.16).
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Similarly, equlibrium equations on Figure 8.6(b) read

0 =
∑

Fy′

=σy′y′A− σxxA sin θ · sin θ + σxyA sin θ · cos θ

− σyyA cos θ · cos θ + σxyA cos θ · sin θ

=σy′y′A− σxxA
1− cos 2θ

2
+ σxyA

sin 2θ

2

− σyyA
1 + cos 2θ

2
+ σxyA

sin 2θ

2

=σy′y′ −
σxx + σyy

2
+

σxx − σyy

2
cos 2θ + σxy sin 2θ, (8.35)

which gives (8.15). The transformation for the shear stress (8.16) is recovered
from

0 =
∑

Fx′

=σx′y′A+ σxxA sin θ · cos θ + σxyA sin θ · sin θ

− σyyA cos θ · sin θ − σxyA cos θ · cos θ

=σx′y′A+ σxxA
sin 2θ

2
+ σxyA

1− cos 2θ

2

− σyyA
sin 2θ

2
− σxyA

1 + cos 2θ

2

=σx′y′ +
σxx − σyy

2
sin 2θ − σxy cos 2θ. (8.36)

(a) (b)

Figure 8.6: Triangular elements (a) for σx′x′ and (b) for σy′y′ .

8.4 Symmetry of elasticity tensor

Recall the stress-strain, or constitutive, relation for linear isotropic elasticity:

σ = C : ε = 2µε+ λ (trε) I. (8.37)
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Below, we apply rotational transformation as

σ′ =RσRT

=R (C : ε)RT

=2µRεRT + λR (trε) IRT

=2µε′ + λ (trε′) I

=C : ε′. (8.38)

Thus, the above relation is invariant under rotational transformations. More-
over, it possesses translational symmetry. Therefore, we have demonstrated
the principle of material frame indifference, which asserts that a constitutive
relation must be objective, remaining invariant under a change of observer.For any proper rotation R, we

have

tr
(

RART

)

= trA.

Note that trace is one of the
invariants such that trA =
∑

i
λi, where λi are the eigen-

values of the matrix A.



Chapter 9

Energy

9.1 Total potential energy

In elasticity, the total potential energy is given by

Π =U −W

=
1

2

∫

Ω

σ : ε dΩ−

(∫

Ω

f · u dΩ+

∫

∂Ω

T · u dΓ

)

. (9.1)

Here, U = 1
2

∫

Ω
σ : ε dΩ is the stored energy, or strain energy, and W =

∫

Ω
f ·

u dΩ +
∫

∂Ω
T · u dΓ is the work done by the external forces. The principle of

minimum potential energy states that the displacement fields at equilibrium
minimizes the total potential energy among all admissible functions.

Thus, the total potential energy is related with the equilibrium equation.
For example, consider a spring with the spring constant of k subjected to an
external force Fext. The total potential energy of this system is given by

Π =

∫ x

0

Fdξ −

∫ x

0

Fextdξ

=

∫ x

0

kξdξ − Fextx

=
1

2
kx2 − Fextx. (9.2)

It’s minimum appears at dΠ/dx = 0, i.e.,

0 =
dΠ

dx
= kx− Fext. (9.3)

Thus, the first-order necesseary condition gives the equilibrium equation.

In addition, let e an error in solution such that x = xtrue + e. Plugging it
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into the energy functional Π, we have

Π [xtrue + e] =
1

2
k (xtrue + e)

2
− F (xtrue + e)

=
1

2
kx2

true − Fxtrue + (kxtrue − F ) e+
1

2
ke2

=Πtrue +
1

2
ke2 > Πtrue. (9.4)

Thus, any function with an error e gives larger total potential energy compared
to that of true solution.

9.2 One-dimensional problems

• Axial load
Stress and strain tensors for axial load case are given by

σ =





σ 0 0
0 0 0
0 0 0



 and ε =





σ
E 0 0
0 −ν σ

E 0
0 0 −ν σ

E



 , (9.5)

where σ = Edu/dx. Then, the corresponding strain energy becomes

Uaxial =
1

2

∫

Ω

σ : ε dΩ

=
1

2

∫

Ω

du

dx
E
du

dx
dΩ

=
1

2

∫ L

0

du

dx
EA

du

dx
dx (9.6)

=
1

2

∫ L

0

F 2

EA
dx. (9.7)

• Torsion
For torsion, we have (in cylindrical coordinate {x, ρ, θ})

σ =





0 0 0

0 0 Gρdφ
dx

0 Gρdφ
dx 0



 and ε =





0 0 0

0 0 1
2ρ

dφ
dx

0 1
2ρ

dφ
dx 0



 . (9.8)

Then, the strain energy reads

Utorsion =
1

2

∫

Ω

σ : ε dΩ

=
1

2

∫

Ω

Gρ
dφ

dx
ρ
dφ

dx
dΩ

=
1

2

∫ L

0

dφ

dx
G

(∫

A

ρ2dA

)

dφ

dx
dx

=
1

2

∫ L

0

dφ

dx
GJ

dφ

dx
dx (9.9)

=
1

2

∫ L

0

T 2

GJ
dx. (9.10)



9.3. FUNCTIONAL DERIVATIVE 63

• Bending
We neglect Poisson effect for bending, which gives

σ =





−E d2w
dx2 y 0 0
0 0 0
0 0 0



 and ε =





−d2w
dx2 y 0 0
0 0 0
0 0 0



 . (9.11)

Then,

Ubending =
1

2

∫

Ω

σ : ε dΩ

=
1

2

∫

Ω

(

−
d2w

dx2
y

)(

−E
d2w

dx2
y

)

dΩ

=
1

2

∫ L

0

d2w

dx2
E

(∫

A

y2dA

)

d2w

dx2
dx

=
1

2

∫ L

0

d2w

dx2
EI

d2w

dx2
dx (9.12)

=
1

2

∫ L

0

M2

EI
dx. (9.13)

• Bending shear
The posteriori shear estimation from bending gives

σ =





0 V Q
Ib 0

V Q
Ib 0 0
0 0 0



 and ε =





0 1
2G

VQ
Ib 0

1
2G

VQ
Ib 0 0

0 0 0



 . (9.14)

Then,

Ubending shear =
1

2

∫

Ω

ε : σdΩ

=
1

2

∫

Ω

(

1

G

V Q

Ib

)(

V Q

Ib

)

dΩ

=
1

2

∫ L

0

V 2

G

(∫

A

Q2

I2b2
dA

)

dx

=
1

2

∫ L

0

fs
V 2

GA
dx. (9.15)

Here, the form factor fs is defined as

fs (x) =
A (x)

I2 (x)

∫

A

Q2 (x, y)

b2 (y)
dA, (9.16)

where for a rectangle fs = 6/5, for a circle fs = 10/9, and for a thin-walled
tube fs = 2.

9.3 Functional derivative

Differentiation of a function f (x) : R → R with respect to its argument x ∈ R

is defined as

df

dx
= lim

ϵ→0

f (x+ ϵ)− f (x)

ϵ
. (9.17)
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As an example, the derivative of a polynomial function reads

d

dx
xn = lim

ϵ→0

(x+ ϵ)
n
− xn

ϵ

= lim
ϵ→0

xn + nϵxn−1 +
∑n

k=2

(

n
k

)

xn−kϵk − xn

ϵ

= lim
ϵ→0

(

nxn−1 +O (ϵ)
)

=nxn−1. (9.18)

A direction v must be introduced to differentiate a multivariate function
f (x) : RN → R, i.e.,

Dvf (x) = lim
ϵ→0

f (x+ ϵv)− f (x)

ϵ
=

d

dϵ

∣

∣

∣

∣

ϵ=0

f (x+ ϵv) . (9.19)

As an example, let f(x, y) = 2x+ y and v = (1, 1); then,

Dvf (x) = lim
ϵ→0

2(x+ ϵ) + (y + ϵ)− 2x− y

ϵ

= lim
ϵ→0

2ϵ+ ϵ

ϵ

=3. (9.20)

If Dvf exists for any direction v and v → Dvf is linear, then, there exits a
vector g such that

Dvf = g · v. (9.21)

The vector g is identified as the gradient of f . Revisiting the above example,

Dvf (x) = lim
ϵ→0

2(x+ ϵvx) + (y + ϵvy)− 2x− y

ϵ

= lim
ϵ→0

ϵ (2, 1) · (vx, vy)

ϵ

= (2, 1) · v. (9.22)

Then we have the gradient g = (2, 1).

Functional derivatives follows the same rule as discussed above. For example,
consider the following energy functional Π [u] : V → R

Π [u] =
1

2

∫ L

0

du

dx
EA

du

dx
dx−

∫ L

0

fudx. (9.23)

Here, V is a function space of admissible functions. Its directional derivative,
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or Gateaux derivative, in the direction of v ∈ W reads

DvΠ [u] = lim
ϵ→0

Π [u+ ϵv]−Π [u]

ϵ

= lim
ϵ→0

1

ϵ

[

1

2

∫ L

0

d(u+ ϵv)

dx
EA

d(u+ ϵv)

dx
dx−

∫ L

0

f(u+ ϵv)dx

−

(

1

2

∫ L

0

du

dx
EA

du

dx
dx−

∫ L

0

fudx

)]

= lim
ϵ→0

1

ϵ

[

1

2

∫ L

0

du

dx
EA

du

dx
dx+

∫ L

0

du

dx
EA

dϵv

dx
dx+

1

2

∫ L

0

dϵv

dx
EA

dϵv

dx
dx

−

∫ L

0

fudx−

∫ L

0

fϵvdx−
1

2

∫ L

0

du

dx
EA

du

dx
dx+

∫ L

0

fudx

]

=

∫ L

0

dv

dx
EA

du

dx
dx−

∫ L

0

fvdx. (9.24)

If we wish to find the gradient g, we need to rearrange the above directional
derivative such that v is linearly separated, i.e.,

DvΠ [u] = (g, v) =

∫ L

0

gvdx. (9.25)

We can achieve the above by integration by parts, i.e.,

DvΠ [u] =

∫ L

0

dv

dx
EA

du

dx
dx−

∫ L

0

fvdx

=

[

vEA
du

dx

]L

0

−

∫ L

0

v
d

dx

[

EA
du

dx

]

−

∫ L

0

vfdx

=

∫ L

0

v

(

d

dx

[

EA
du

dx

]

+ f

)

dx. (9.26)

In the above, we assumed that the boundary term vanishes from the choice of
V and W. Then, we have the gradient as

g =
d

dx

[

EA
du

dx

]

+ f. (9.27)

The principle of minimum potential energy requires that DvΠ [u] = 0 for
any v. Consequently, we require g = 0, which gives the governing equation:

d

dx

[

EA
du

dx

]

+ f = 0. (9.28)
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9.4 Applications

Define a trial solution u with an error e, such that u = utrue+ e. Then the total
potential energy for axial load reads

Π [utrue + e] =
1

2

∫ L

0

d (utrue + e)

dx
EA

d (utrue + e)

dx
dx−

∫ L

0

f (utrue + e) dx

=
1

2

∫ L

0

dutrue

dx
EA

dutrue

dx
dx−

∫ L

0

utruefdx

+

∫ L

0

dutrue

dx
EA

de

dx
dx−

∫ L

0

efdx+
1

2

∫ L

0

de

dx
EA

de

dx
dx

=Π [utrue] +
1

2

∫ L

0

de

dx
EA

de

dx
dx ≥ Π [utrue] . (9.29)

Thus, any error e always overestimates the total potential energy.

9.5 Admissible functions

Not all functions are allowed as candidates of a given problem. Instead, a trial
function is admissible only if it satisfies two requirements:

1. Dirichlet boundary condition and

2. Finite strain energy.

Dirichlet data prescribe kinematic quantities—displacement for axial loading
and torsion, or deflection and rotation (slope) for beams. Although meeting the
corresponding Neumann (force or moment) boundary conditions is desirable, it
is not necessary.

Finite strain energy is ensured when the relevant strain measure is integrable:

∫ L

0

du

dx
EA

du

dx
dx < ∞ (axial load), (9.30)

∫ L

0

dφ

dx
GJ

dφ

dx
dx < ∞ (torsion), and (9.31)

∫ L

0

d2w

dx2
EI

d2w

dx2
dx < ∞ (bending). (9.32)

For example, consider an axially loaded bar fixed at one end and free at the
other end, i.e., u = 0 at x = 0 and EAdu/dx = 0 at x = L. The corresponding
function space U of admissible functions reads

U =

{

u : u(0) = 0,

∫ L

0

(

du

dx

)2

dx < ∞,

∫ L

0

u2dx < ∞

}

. (9.33)

Thus, a function with a finite jump such as

u (x) =

{

x 0 ≤ x < L/2
L L/2 ≤ x ≤ L

(9.34)
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is not admissible because the its derivative at the jump is described by a Dirac
delta function, which is not square-integrable.

The extra integrability condition on u ensures finite norm of the function,
which is required for existence and uniqueness of a solution. A function space
with the two integrability conditions is called Sobolev space and reads

H1 (0, L) =

{

u :

∫ L

0

(

du

dx

)2

dx < ∞,

∫ L

0

u2dx < ∞

}

. (9.35)

Thus, the function space (9.33) can be equivalently stated as

U =
{

u ∈ H1(0, L) : u(0) = 0
}

. (9.36)

On the other hand, the admissible function space for a simple beam (u(0) =
u(L) = 0 and M(0) = M(L) = 0) reads

U =
{

w ∈ H2(0, L) : w(0) = w(L) = 0
}

, (9.37)

where

H2 (0, L) =

{

u :

∫ L

0

(

d2u

dx2

)2

dx < ∞,

∫ L

0

(

du

dx

)2

dx < ∞,

∫ L

0

u2dx < ∞

}

.

(9.38)

Here, each integrability condition corresponds to finite energy, finite slope, and
finite deflection, respectively. Thus, an admissible function must be differen-
tiable so that its second-order derivative is continuous.
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Chapter 10

Stability (buckling)

10.1 Buckling of a discrete system

A structure may fail when its material fractures due to large strain or stress. In
this chapter, we discuss a different type of failure called buckling, which involves
a loss of system-level stiffness.

We start our discussion with a system of two rigid bars connected by a
rotational spring (Figure 10.1(a)). The rotational spring resists “bending” of
the two-bar system due to the axial load p via a reaction moment proportional
to the angle θ such that

M = 2θk. (10.1)

Here, k is the rotational stiffness. For the structure to be stable, the reaction
moment must be balanced by the moment due to the load p, i.e.,

0 =M − Lθp

=2θk −
L

2
θp

=

(

2k −
L

2
p

)

θ. (10.2)

In the above, we observe that the equation is satisfied regardless of the value of
θ when 2k − Lp = 0. Such load is called the critical load and reads

pcr =
4k

L
. (10.3)

Thus, any values of θ, including zero, are solutions, i.e, the system is unstable.
Note that the critical load is inversely proportional to the length L.
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(a) (b) (c)

Figure 10.1: Two rigid bars connected by a rotational spring. (a) System. (b)
Deformed shape. (c) Freebody diagram.

10.2 Buckling of a column

Let’s consider a continuum counterpart of the previous example, i.e, a column
subject to an axial load (Figure 10.2). LetM denote the moment due to bending,
we construct moment equilibrium equation such that

0 =M + pw

=EI
d2w

dx2
+ pw

=

(

EI
d2

dx2
+ p

)

w. (10.4)

Again, we seek for a critical load p such that the above equation is satisfies
regardless of the magnitude of w.

We try w = Aeikx + Be−ikx as a trial solution. The trial solution satisfies
the governing equation when k2 = p/EI. Then, the boundary condition

w(0) = w(L) = 0 (10.5)

gives

A+B = 0 and AeikL +Be−ikL = 0. (10.6)

We can write the above boundary conditions in a matrix form as
[

1 1
eikL e−ikL

](

A
B

)

=

(

0
0

)

. (10.7)

The solution, except for the trivial solution A = B = 0, exists only if the matrix
is singular, i.e.,

0 = det

[

1 1
eikL e−ikL

]

= e−ikL − eikL

= − 2 sin kL. (10.8)

Thus, we have

kL = nπ (10.9)
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or, since k =
√

p/EI,

p =
n2π2EI

L2
≡ pcr, n = 1, 2, . . . . (10.10)

The corresponding deflection w is

w (x) = A sin
nπ

L
x, (10.11)

where the magnitude A is not determined. For each n, we have a critical load
and corresponding buckling shape. Note also that different boundary conditions
lead to differnt critical loads and buckling shapes.

(a) (b) (c)

Figure 10.2: A column subject to an axial load. (a) System. (b) Deformed
shape. (c) Freebody diagram.

The modified beam equation considering p−∆ effect reads

d2

dx2

[

EI
d2w

dx2

]

+ p
d2w

dx2
= q. (10.12)

The corresponding total potential energy reads

Π [w] =
1

2

∫ L

0

(

d2w

dx2
EI

d2w

dx2
− p

dw

dx

dw

dx

)

dx−

∫ L

0

qwdx. (10.13)

Then, computing the total potential energy for the problem above, we have

Π [w] =
1

2

(

n2π2

L2

)2

A2EI

∫ L

0

sin2
nπx

L
dx−

p

2

(

n2π2

L2

)

A2

∫ L

0

cos2
nπx

L
dx

=
A2

2

L

2

n2π2

L2

(

n2π2EI

L2
− p

)

. (10.14)

The above potential energy vanishes when p = pcr regardless of A, which is the
case when the principle of minimum potential energy does not hold.

10.3 Effect of Boundary Conditions

As mentioned earlier, the stability of a column is highly sensitive to its boundary
conditions.
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Consider first a column with both ends fixed, as shown in Figure 10.3. The
boundary conditions are:

w (0) = w (L) = 0 and (10.15)

dw (0)

dx
=

dw (L)

dx
=0. (10.16)

We retain the moment reactionMo as an unknown and formulate the equilibrium
equation based on the freebody diagram in Figure 10.3(c), which reads

0 =M + pw −Mo

=EI
d2w

dx2
+ pw −Mo. (10.17)

We assume a solution of the form

w =Aeikx +Be−ikx +
Mo

p
, (10.18)

where k2 = p/(EI). The given choice of solution form satisfies the equlibrium
equation for arbitrary A, B and Mo. Then, we apply the boundary conditions,
which gives



























A+B +
Mo

p
= 0

AeikL +Be−ikL +
Mo

p
= 0

A (ik) +B (−ik) = 0
A (ik) eikL +B (−ik) e−ikL = 0

. (10.19)

Solving the first and thrid equations gives A = B = −Mo/(2p). Then,











−
Mo

p
cos kL+

Mo

p
= 0

Mo

p
k sin kL = 0

⇒ cos kL = 1 and sin kL = 0. (10.20)

For nontrivial solutions, the following condition must hold

p =
(2π)

2
n2EI

L2
. (10.21)

The corresponding deflection shape becomes

w =
Mo

p

(

1− cos
2nπx

L

)

. (10.22)

Next, conider a case with one fixed support and one free support (Fig-
ure 10.4). Here, we denote a small deflection at the end (x = L) as δ. The
corresponding boundary conditions are

w (0) =
dw (0)

dx
=0. and (10.23)

w (L) = δ. (10.24)
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(a) (b) (c)

Figure 10.3: A column with both ends fixed subject to an axial load. (a) System.
(b) Deformed shape. (c) Freebody diagram.

The equilibrium equation reads

0 =M + pw − pδ

=EI
d2w

dx2
+ pw − pδ. (10.25)

The ansatz is given by (k2 = p/EI)

w (x) = Aeikx +Be−ikx + δ. (10.26)

Applying the boundary conditions, we have







A+B + δ = 0
A (ik) +B (−ik) = 0
AeikL +Be−ikL + δ = δ

(10.27)

or




1 1 1
1 −1 0

eikL e−ikL 0









A
B
δ



 =





0
0
0



 . (10.28)

For the existence of nontrivial solution, we require

cos kL = 0 ⇒ kL =
(2n− 1)π

2
. (10.29)

Thus, we have

p =
(2n− 1)

2
π2EI

4L2
. (10.30)

The corresponding deflection shape is

w (x) = δ

[

1− cos
(2n− 1)πx

2L

]

. (10.31)
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(a) (b) (c)

Figure 10.4: A column with fixed and free supports subject to an axial load.
(a) System. (b) Deformed shape. (c) Freebody diagram.

(a) (b) (c)

Figure 10.5: A column with hinged and fixed supports subject to an axial load.
(a) System. (b) Deformed shape. (c) Freebody diagram.
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Figure 10.5 shows a column with one hinged support and one fixed support
such that

w (0) = 0 and (10.32)

w (L) =
dw (L)

dx
=0. (10.33)

The corresponding equilibrium equation reads

0 =M + pw −Mo + (L− x)
Mo

L

=EI
d2w

dx2
+ pw −

Mox

L
. (10.34)

We take

w = Aeikx +Be−ikx +
Mo

p

x

L
. (10.35)

Applying the boundary conditions we have



















A+B = 0

AeikL +Be−ikL +
Mo

p
= 0

A (ik) eikL +B (−ik) e−ikL +
Mo

pL
= 0

(10.36)

or










1 1 0

eikL e−ikL 1

p

(ik) eikL (−ik) e−ikL 1

pL















A
B
Mo



 =





0
0
0



 . (10.37)

A nontrivial solution exists if the determinant of the matrix vanishes, which
gives

tan kL = kL. (10.38)

Then, the smallest nontrivial solution occurs approximately at kL ≈ 4.49 as
shown in Figure 10.6. Thus, the critical load is

pcr =
20.2EI

L2
(10.39)

and the corresponding deflected shape reads

w =
Mo

p

[ x

L
+ 1.02 sin

(

4.49
x

L

)]

. (10.40)
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Figure 10.6: Solution set for tan kL = kL.
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