

Midterm Exam 1 - Mechanics of Materials

Seoul National University

April 2nd, 2025

Problem 1. (Stress tensor) Consider a two-dimensional bar problem subjected to a uniform normal stress (Figure 1(a)). Let \mathbf{T} denote the traction and a denote the cross-sectional length at the boundaries of the bar; then, the force \mathbf{F} on the boundaries share the same magnitude with opposite directions to satisfy the balance of forces (or the equilibrium equation), where

$$\mathbf{F} = \mathbf{T}a. \quad (1)$$

The components of the traction are given by

$$\mathbf{T} = \begin{pmatrix} F/a \\ 0 \end{pmatrix}, \quad (2)$$

where $F = |\mathbf{F}|$.

We seek to determine the components of the stress tensor $\boldsymbol{\sigma}$ such that

$$\mathbf{T} = \boldsymbol{\sigma} \mathbf{n} \quad \text{or} \quad \begin{pmatrix} T_x \\ T_y \end{pmatrix} = \begin{bmatrix} \sigma_{xx} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{yy} \end{bmatrix} \begin{pmatrix} n_x \\ n_y \end{pmatrix}, \quad (3)$$

where \mathbf{n} is the unit outward normal vector on a surface. Figure 1(b) and (c) are freebody diagrams of different cross-sections, where

$$\mathbf{n}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad \text{and} \quad \mathbf{n}_2 = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}. \quad (4)$$

1. Using the balance of forces, find the components of \mathbf{T}_1 and \mathbf{T}_2 in terms of F , a and θ . (Note that (1)-(1)' and (2)-(2)' have different cross-sectional lengths.)
2. Then, find the components of stress tensor from the above result and the definition of the stress tensor (3).

Problem 2 (Hooke's law and Poisson's ratio) We assume Hooke's law as the relation between the normal stress and normal strain, i.e.,

$$\sigma = E\varepsilon. \quad (5)$$

Here, σ is the normal stress, E is the Young's modulus, and ε is the normal strain. In the above case (Figure 1(a)), the normal (horizontal) stress is $\sigma = F/a$.

1. Let b the horizontal length of the bar, find the normal strain ε and the horizontal elongation δ .
2. Let $\nu = -\varepsilon'/\varepsilon$ denote the Poisson's ratio, where ε' is the vertical strain, find the vertical elongation δ' in terms of F , a , b , E , and ν .
3. Calculate the change in total area.

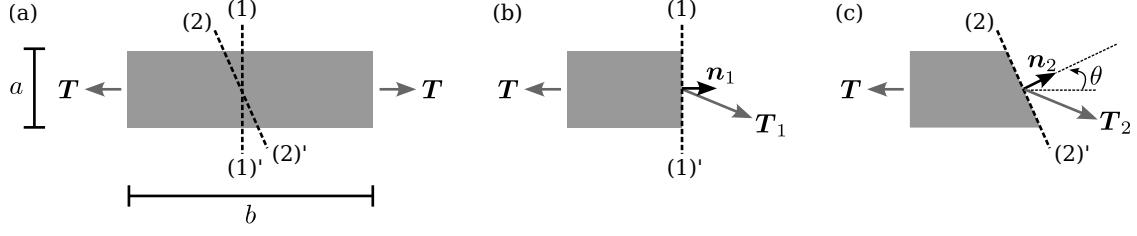


Figure 1: Two-dimensional bar problem. (a) A bar subjected to a uniform normal stress. (b) A freebody diagram with cross-section (1)-(1)'. (b) A freebody diagram with cross-section (2)-(2)'.

Problem 3 (Bar equation) We can approximate the general three-dimensional problem into a one-dimensional problem when considering a slender object subjected to an axial load. The corresponding one-dimensional problem is governed by the bar equation, i.e.,

$$\frac{d}{dx} \left[EA \frac{du}{dx} \right] + f = 0, \quad 0 < x < L. \quad (6)$$

In the above, E is the Young's modulus, A is the cross-sectional area, u is the axial displacement and f is the external force.

1. Consider the following boundary conditions:

$$u(0) = 0 \quad \text{and} \quad (7)$$

$$u(L) = u_o. \quad (8)$$

Here, $u_o > 0$ is the given displacement at $x = L$. Let $f = 0$ and EA is constant; find $u(x)$ by integrating the governing equation and applying the boundary condition.

2. In statics, we don't consider a case with homogeneous Neumann boundary conditions at both ends, i.e.,

$$EA \frac{du}{dx} = 0 \quad \text{at} \quad x = 0 \quad \text{and} \quad (9)$$

$$EA \frac{du}{dx} = 0 \quad \text{at} \quad x = L. \quad (10)$$

Provide mathematical and physical interpretations why such boundary conditions are not used.