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Preface

This monograph is written for the course Finite Element Method offered in the
Department of Civil, Urban and Environmental Engineering at Seoul National
University.

In preparing these notes, I borrowed many parts from the following books
and lecture notes: [Hughes, 2012, Lee, 2022, Demkowicz, 2023, Engquist, 2014,
Cook, 2001, Ciarlet, 2002, Quarteroni et al., 2006].

These lecture notes are a working manuscript, subject to ongoing refine-
ment and enhancement; I welcome and greatly appreciate any reports regarding
errors, typos, or any other inaccuracies found within the notes.
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Chapter 1

Preliminaries

1.1 Index notation

We follow Einstein notation and use regular font for both scalars and tensors,
whose types are to be inferred from context. For example, a vector v expressed
in terms of a basis g; is written as

v =1'g. (1.1)

In most cases, we make no distinction between wvectors and covectors, as a
Cartesian basis is assumed unless stated otherwise. Accordingly, we also write
v = vlg; = v;¢' = v;g;. Similarly, the inner product between two geometric
vectors is given by

(a,b) =a-b=a'b; = a;b;, (1.2)

where - denotes (single) contraction and () indicates complex conjugation of
the subtended quantity.

1.2 Inner product and induced norm

A set equipped with inner product is called an inner product space. An inner
product is a bilinear form (or a sesquilinear form for complex vectors) such that

(,):VxV=F. (1.3)

Here F is either a real number R or a complex number C. Thus, an inner product
takes two vectors in V and returns a scalar.

In addition, an inner product must satisfy the following properties [Oden
and Demkowicz, 2017]:

e Linearity with respect to the first argument

(au+ pv,w) = a(u,w) + S (v,w) VYo,B €F, Yu,v,w € V. (1.4)

e Conjugate symmetry

(u,v) = (v,u) Yu,v e V. (1.5)

1



2 CHAPTER 1. PRELIMINARIES

e Positive definiteness

(u,u) >0 Yu#0, ue. (1.6)

Note that an inner product is anti-linear with respect to the second argument,
ie.,

(u,av) =@ (u,v) Va el Yuve). (1.7)
Orthogonality is defined such that
(u,v) =0. (1.8)
Any inner product space is equipped with an induced norm such that
lull = v/(u,w). (1.9)

Theorem 1.2.1 (Cauchy—Schwarz inequality) Let (-,-) be an inner prod-
uct on a vector space V. Then, Yu,v € V,

[(u, 0)| < lul [|o]] - (1.10)
Equality holds when w and v are linearly dependent.
Triangle inequality can be proved from the Cauchy-Schwarz inequality as

lu+vl* = (u+v,u+0)
= (u,u) + (u,v) + (v,u) + (v,v)
— (u,u) + 2Re {(u,v)} + (v, )
2 2
< lull™ + 2|(w, v)| + [|v]|
2 2
< lull™ 4 2wl 1ol + o]l
2
= (lull +1lol)”- (1.11)
Thus, we have ||u + v| < |Jul] + ||v]].
The Cauchy—Schwarz inequality arises in numerous contexts, including the
determination of admissible function spaces in weak formulations.

1.3 Function space

In these lecture notes, we consider only Hilbert spaces:

o L? space is an inner product space equipped with L? norm, e.g.,

1/2
2
ol ey = ( Xt ) . (1.12)

e Sobolev space of the first order is

H'(Q) = {u € L?(Q) : gradu € L? (9)3} . (1.13)
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The corresponding inner product is
(4 v) () = (w,v) + (gradu, grad v)
/ uv —|—/ gradu - grad v (1.14)
and the induced norm is
Hu”Hl(Q) =,/ (u, U)Hl(Q)' (1.15)

e Sobolev space of the k-th order is
H"(Q)={ueL?*(Q) : D*ue L*(Q), V|a| <k}. (1.16)

Here, D* = 9ol / (9x1 025> ... dx%) denotes partial derivative of order
la| = @1 + a2 + ... + a, in the weak sense.

e H (div) space

H (div, Q) = {u e L2(Q)® : divu e L? (Q)} . (1.17)

e H (curl) space

H (curl, Q) = {u e L*(Q)° : curlu € L? (Q)‘S} . (1.18)

1.4 Smoothness

C* functions are continuous upto its k-th derivative. For example, sinz is a
C*° function.

1.5 Differentiation

The directional derivative of a function, or a functional, u (z) with respect to x
in the direction v is defined as

D,u = lim (m—&—ev)—u(m).

e—0 €

(1.19)

If the map v — D,u is linear, then the directional derivative D,u is identified
as Gateaux differential. Then, we have

Dyu = (grad u,v), (1.20)

where grad u is called the gradient of w.
Weak derivative of a generalized function v is defined such that

(u’ (b/) == (Ua ¢) : (1'21)

Here, v is the weak derivative of u and ¢ is a test function.
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1.6 Integration by parts

Integration by parts in one dimension reads

1 1
du 1 dv
—v = — —_—. 1.22
0 dmv [uv]o /0 udx ( )

The multi-dimensional generalization of the above equation reads

ou / ov
- = UVN; — U—. 1.23
Q 811 o0 Q 0x1 ( )

In the above, @ € RY is the domain in N dimension and its boundary is
denoted by 012, and n; is the i-th component of the outward normal vector on
the boundary.

Integration by parts for divergence and curl operators are (respectively)

/(divu)v:/ (u~n)v—/u~gradv and (1.24)
Q o0 Q

/cur1E~F:/ (an)~F—|—/E.cur1F. (1.25)
Q o0 Q

In the above, u, v, F, and F are vector-valued functions and n is unit outward
normal vector. Integration by parts involves with the divergence of a two tensor,
A € RVXN reads

/Q(divA) ‘v = /@Q (An) v — /QA : grad v, (1.26)

where : denotes double contraction such that A: B = AijBij.



Chapter 2

Introduction

2.1 Change of basis

The (contravariant) component of a vector v® corresponds to an orthonormal
basis e; can be easily obtained by computing its projection on the basis, i.e.,

(v,e;) = v'. (2.1)
However, we need a rigorous approach for non-orthonormal bases; the con-

travariant component of a vector v’ is obtained by its projection on the dual
basis g, i.e.,

(v,9') = (Vg5,9") =" (95,9") = 0?8} = v". (2.2)

Here, 5} is the Kronecker delta. Similarly, we can calculate the covariant com-
ponent of a vector by

(v, 9i) = vi. (2.3)

We can still calculate the contravariant components of a vector using basis,
however, in a slightly convoluted way, i.e.,

(v,9:) = (ngjagi)
=/ (95,9:) - (2.6)

In the above, we have a system of equations, where v7 are the unknowns. Thus,
we have a matrix equation K;;u’ = d;, where

(glygl) (91792) (glagN) Ul (Uagi)
(92,91)  (92,92) ... (92,9n) v? (v, 92)

. o . = . (2.7)
(gn:91) (gn,92) - (gwogw) | \ oV (v, 9)
—K,; —u —d;

As a special case, consider an orthogonal basis. Then the matrix K;; becomes
diagonal. Thus, we have

'Ui _ (vvgi) (28)

Dual basis ¢* is defined such
that

(95.9") =95, (24)
where 51’]’ =64 = 55 = 5; de-
notes Kronecker delta:

Z_ 0 isi
5j={1 zi; (2.5)
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For an orthonormal basis, (2.8) further reduces to (2.1) as (g;,9:;) = 1, because
dual basis and basis are identical.

Example 2.1.1 (Coordinate transform) Calculate the component of a
vector v = 2e1 + eo with respect to basis g1 = e1 and g2 = e1 + es.
Expanding the (2.6), we have
vigr-g1 +v%g2 g1 =v-g1 and (2.9a)
v'gr g2 +07g2 - g2 =v - g (2.9b)
In the above, we have g1-g1 = ej1-e1 =1,91-92 =¢g2-g1 = e1-(e1 +e3) =1,

g2-g2 = (e1+e2) - (e1+e) =2, v-g1 = (2e1+¢€2) -1 =2, and v- g9
(2e1 + e3) - (e1 + e2) = 3. Rewriting (2.9) into a matrix equation, we have

-G e

Then, the solution to the above equation is

v!=1, and o®=1. (2.11)

)

Alternatively, we can obtain the same result using dual bases, i.e., ¢! =
e1 — ez and g% = ey. Then, the equation (2.2) gives

v =v-g' = (2e; +e2)-(e1 —ex) =1 and (2.12a)
v?=v-g% = (21 +ez) e = 1. (2.12b)

In summary, we have v = 2e; 4+ e3 = g1 + go.

Example 2.1.2 (Fourier series) Consider an odd function f(z) defined
as below

f(x) =z, z€(-05,0.5). (2.13)
Find the component of sinusoidal basis, i.e.,
gn =sin(nmz), n € Zi,i. (2.14)

The above sinusoidal basis is orthogonal; thus, we use (2.8), where

0.5
(gns gn) = / sin (nmrzx) sin (nmx)de = 0.5, VYn€Zi, and (2.15a)
—0.5

0-5 sin (nw cos (nm
(f,gn) = /_0 . xsin (nrx) dr = 2s (71(77)2/2) _ (mr /2) (2.15b)
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Then, we have

o= (f, 9n) _ sin (nm/2) _ cos (nm/2)
(gn;gn) (TL7T)2 2nm . (216)

Finally, the function f(x) is discretized, or expressed by linear combinations
of basis gy, i.e.,

f(z) = Z (sin (nm/2) _ cos (n7r/2)) sin (nmx) . (2.17)

el (nﬂ')2 2nm

2.2 Function approximation

What will happen if the choice of basis does not span the function space, e.g., a
truncated Fourier series? In such case, we have an approximation of a function.
In fact, we obtain the best approximation with respect to the norm induced by
the associated inner product. We can verify this by formulating an optimization
problem, or least square error problem: given f and g,, find v™ such that

1
minTl, IT= o |[v"g, — fII7. (2.18)

In the above, the objective functional II is proportional to the square of the
error, measured by the induced norm, i.e.,

lall = /(a, a). (2.19)

The objective functional II vanishes if and only if v™g,, = f; otherwise, it will
always return a positive non-zero number. Then, the minimization problem can
be solved by satisfying the first-order optimality condition, i.e.,

_on

- Own
1o .

=3 aun (V" gm — f 0 gk — f)

= (U’mgm - f7 gn)

=0" (gm, gn) = (gn, [)- (2.20)

0

Thus, we have recovered the same expression as (2.6).

Example 2.2.1 (Polynomial approximation) Approzimate a function
f(x) = sinz, x € (—m,7) using polynomials g, = =™, n = 1,2,...,N,
N =5.
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We use (2.6), where

™ 7.rm+n+1 — (=7 m+n+1
(gm> gn) = / 2"y = oy 51 +)1 : (2.21a)
(g1,sinx) =2, (2.21b)
(g2,sinz) =0, (2.21¢)
(g93,sinz) =27 (772 -6), (2.21d)
(9a,sinz) = and (2.21e)
(gs,sinz) =27 (120 20m® + 7). (2.21f)

Then, we have v! ~ 0.9879, v = 0, v® &~ —0.1553, v* = 0, and v® ~ 0.0056.
Figure 2.1 shows the polynomial approximations of function f using N = 3
and N = 5.

== approx. (N=3)
—— approx. (N=5)
- exact

|
3
o
5

Figure 2.1: Polynomial approximations of sinz (Example 2.2.1)

Different choices of bases yield different accuracies, computational costs,
stability, etc. Finite element method is one example, where we discretize a
differential equation, therefore a function/solution, by a set of “local” basis.

2.3 Differential equation and its approximations

A differential equation can be stated abstractly as
F (ux oM, f) —0, (2.22)

where u : F¢ 5 Q — F*® is the unknown function to be determined, z is the co-
ordinates, 89(6") are differential operators, and f are given data such as boundary
and initial conditions.

We assume our problems are wellposed, i.e., we require

e cxistence of solution

e uniqueness of solution
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e continuous dependence on data: let u and v denote solutions correspond
to data f and g, respectively, i.e., F(u, f) = 0 and F(v,g) = 0. Then,
there exists C' € Ry such that

[u—oll, <CIIf = gl..- (2.23)

In general, the problem F(u) = 0 is posed in an infinite-dimensional space.
Approximation involves reducing the problem to a finite-dimensional problem
F"(u") = 0 and solving the resulting system to find u”, which is a finite-
dimensional representation of u. We may consider various representation strate-
gies such as (Figure 2.2) (a) pointwise representation; (b) linear combination of
known functions, i.e., u" (z) = a;g; (z); (c) local averages on finite subspaces;
and (d) particle distribution, where local density represents the function value.
These representations lead to different numerical methods including (a) Finite

(a) (b) © (d)

Figure 2.2: Various representation strategies. (a) Pointwise representation. (b)
Linear combination of known functions. (¢) Local averages. (d) Particle distri-
bution.

Difference Method (FDM); (b) Finite Element Method (FEM) (c) Finite Volume
Method (FVM); and (d) Particle Method (PM).

Example 2.3.1 (Finite difference method) Consider a model Pois-
son’s equation:

d?u
@+f:0 z€(0,1) (2.24)
u(O) = u(l) =0

Use central differencing to approximate, i.e., discretize, the given problem
and provide local truncation error.
We approximate a second-order derivative of a function using the central
differencing as
d>u  u(z—h)—2u(z)+u(z+h)

~

dz? "~ h2

: (2.25)

Denoting w; 11 = u (z; + h), the above governing equation becomes

2 , (2.26)

i1 — 2u; + u
Ui—1 “1+u’+l+fi=() i=12,...,N-1
UO:'U,N:O
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where, h = 1/N. Rewriting the above equation in a matrix equation, we
have

2 -1 U1 f1

1 -1 2 -1 U f2
-1 2 -1 UN_2 N2
-1 2 UN-1 fn-1

To calculate the local truncation error, take a Taylor expansion of u; 1
about 4, which gives

Uj+1 = U (zz + h)
2 3 4
h—u’” (x;) + h—u”" (x;)  (2.28)

h
~u(z) + hu' (z;) + ?u" (z;) + G 51
Then, (2.26) becomes
Ui—1 — 2U; + Ui
0= 2 + fi
w () = b (i) + B (i) = Tpu” (@) + B (20) | —2u ()
= 2 + 12
u(x;) + hu' (x;) + %u” (x;) + %31/” (x;) + %u”” (2;) - F ()
h? !
h2
=u (i) + f (@) + 5u™ (@)
=0 (h?), (2.29)
which reveals the second-order convergence as we refine h.
2.4 Weak form
2.4.1 Model problem
Let us revisit the Poisson’s equation:
d*u
u(0) =u(l) =0

The left-hand side of the governing equation vanishes for all € (0,1) when u
is a true solution. Thus, the governing equation gives a pointwise requirement
of the solution, and such formulation is called a strong form.

Alternatively, a weak form focuses on the definition of the 0 on the right-
hand side; like the left-hand side of the equation, 0 is a function, or a vector.
Specifically, the function 0 returns a number 0 when inner-producted with any



2.4. WEAK FORM 11

other function. Thus, we can equivalently write

/v (22}; + f) =0, Vo, (2.31)

which is identified as a weak form. Here, u is called a trial function and the
arbitrary function v is called a test function.
The above weak form becomes more useful when we take an integration by

parts:
d*u
dul’ dv du
=|lv—| — | —— . 2.32
{vdx}o dxdx+/vf (2:32)
Here, the boundary term vanishes when the test function satisfies homogeneous
Dirichlet boundary conditions, i.e., v(0) = v(1) = 0. Then, we have

uel
(W) { b(u,v)=1(v), YveV ' (2.33)
In the above, the bilinear and linear forms are defined by
dv du
b (u,v) = s and (2.34)

I(v) = /vf (2.35)

u and v may be elements of different function spaces & and V. However, in the
given model problem, we derived a symmetric, or Hermitian, bilinear form by
integration by parts, which allowed to use the same function space for both trial
and test functions:

U=V ={weH (0,1) : w(0)=w(l)=0}. (2.36)

The space H'(0, 1) is chosen to ensure the bilinear form is integrable, i.e.,

du dv
—_— — 2.
‘(dm’dm)‘<oo’ (2.37)

where the Cauchy-Schwarz inequality gives
du_du)| _|du
dx’ dx

dx
2.4.2 Non-homogeneous boundary conditions

du

- (2.38)

In this section, we discuss a more rigorous approach taking into account non-
homogeneous boundary conditions.
The strong form of our model problem reads:
Given f: — R and constants p and ¢, find w : 2 — R, such that
d*u
ﬁ‘f’fzo, iEGQ:(O,l)
(S)g _du|  _ : (2.39)
- =p
T lz=0
u|x:1 = q
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We multiply the governing equation with a test function v and integrate over
the domain.

1 1 1
= [vdu} - d—u@d:ﬂ—i-/ vfdx. (2.40)
0

=b(u,v) =l(v)

We introduce two function spaces U and V such that

U=V ={ueH" (Q) : u(l) =0}. (2.41)
Then, we have the following weak form:
ueqg+uU
<W){ b(u,v) =1 () +v(0)p, YoV - (2.42)

In the above, ¢ + U denotes the algebraic sum of ¢ and U, i.e.,
J+U={G+w : wel}. (2.43)

Here, ¢ is an extension of ¢ to the domain, which is called a finite energy lift of
q (Figure 2.3). Introducing the modified linear form

™4 (v) = L(v) + v (0)p—b(q,v), (2.44)
we have an alternative form:
weU
(W) { b(w,v) = ™4 (), YoeV - (2.45)

In the above, we assumed that U is a subset of a larger space A and ¢ € X.
uweqg+U

weUCX

0 GgeX 1

Figure 2.3: Finite energy lift of q.

2.5 Galerkin method

2.5.1 GGalerkin approximation of a weak form

The Galerkin approximation replaces the original function spaces to their finite-
dimensional subsets: 4" C U and V" C V such that

N
ut = {wh cU :w'(z)=> a'gn (z)} and (2.46)

n=1

N
Vh = {wh eV wh(x)= Z b"hy, (:z:)} . (2.47)
n=1
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In the above, g, and h,, are known basis functions and a, and b, are the
coefficients. Then, we have the Galerkin approximation:

ul h
(G) { b (uehil}h) 1), whevh (2.48)

Thus, Galerkin method retains the original problem but approximates the func-
tion spaces.

Writing the basis functions explicitly, the Galerkin approximation yields a
matrix equation, i.e.,

anp € R
or

Here, we have the same form as (2.7).

Example 2.5.1 (Polynomial basis) Consider a model problem
d*u
u(0) =u(l) =0

or, in a weak form,

uh e yh
{ b (uh,vh) =1 (vh) . Yot euh (2.52)
In the above,
1 g h 3k
du” dv
h .k
= =22 2.
b(u",0") /0 o dx and (2.53)
1
h

I (v ):/O o' 1da. (2.54)

Find u" when the function space is given by

2
ut = {wh () =) anz™ : w"(0) =wh(1) = o} : (2.55)
n=0
Initially, we have three unknowns, ag, a1, and as. Applying the boundary

condition, we have

ap =0 and (2.56)
ag + a1 + as =0. (257)

Then, we have left with only one unknown, i.e.,

uh = Az (z—1). (2.58)
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The matrix equation K11u; = f1 is obtained by plugging the above function
into both trial and test functions in the weak form, where

1
1
Ky = / (22 —1)°dz = 3 (2.59)
0
up =A, and (2.60)
! 1
f1=/ z(r—1) -1de = —= (2.61)
O 6
Then, we have a = —1/2, which gives
h 1
u''=——z(zx—-1). (2.62)

2

The above solution coincides with the exact solution of the given problem,
which occurs when the finite-dimensional subspace happens to contain the
true solution.

We can consider a larger subspace, where u
When boundary conditions are applied, we have

h 3

= a0+a1x+a2x2+a3x .

uh=Arxz(x—1)+Arz (2 —1). (2.63)
g1 g2

Here, the components of the matrix equation read

1
1
K = / (20 —1)*dz = 3 (2.64)
0
! 1
Ko =Ko = / (22 —1) (32% = 1) do = 3 (2.65)
0
! 2 2 4
K22 = (3.’E - 1) dr = 5, (266)
0
! 1
fi= / x(x—1)~1d3:=—6, and (2.67)
0
! 1
f2:/ m(x2—1)-1dx:—1. (2.68)
0
or
11 1
11 Ay _1
Pl (a)-() (2.69)
[ 3 5 )\ A —1
Then, we recover the same solution since A3 = —1/2 and A5 = 0.
Exercise 2.5.1 (Polynomial basis) Repeat the above example for
d*u .
pr) +7m2sinte =0, xz¢€(0,1) _ (2.70)

w(0) = u(1) = 0
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The function space is given by

N
Uuh =yh = {wh (x) = Z angn () @ gn(x) =2 (2" — 1)} . (2.71)
n=1

Try different N and compare the solutions with the exact one:

u™?°" = sin 7. (2.72)

Galerkin method is classified as Bubnov-Galerkin method when U" = V",
otherwise is called Petrov-Galerkin method. For self-adjoint problems, the nat-
ural, but not necessary, choice is the Bubnov-Galerkin method. In many litera-
ture, Bubnov-Galerkin method is simply called Galerkin method.

We will mainly discuss self-adjoint elliptic problems, where Galerkin approx-
imation of a weak form, weighted residual method, Galerkin approximation of
the variational principle, Ritz method (i.e., minimization of energy over the ap-
proximate space), and minimization of function residual become equivalent to
each other.

2.5.2 Weighted residual method

The weighted residual method starts with the function approximation and iden-
tifies the residual as

d2uh
- . 2.
Rg 02 +f#0 (2.73)

Then, we have

0= /d)mRE
1 d2uh
:/O (z)m(dx? +f)d17
du 1 [ dey, dut L
_ {%dxh_/o W%da:—&—/o b iz
=-b (uh7 ¢m) +1 (¢m) ) (274)

which becomes identical with (2.50) when ¢,, = h,, and u” = a,,g,.

2.5.3 Galerkin approximation of variational principle

We assume a self-adjoint problem. Suppose the energy functional (total poten-
tial energy) is given by

Il [u] = %b(u,u) —1(u). (2.75)

Here, self-adjoint assumption implies b is symmetric, i.e., b(u,v) = b(v,u)
Yu,v € U and, therefore, U = V.
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Following the principle of minimum potential energy, we optimize, i.e., use
variational principle, the energy functional. The principle of minimum potential
energy implies that the solution u is obtained by

= in IT [w] . 2.
u = arg min [w] (2.76)

Then, the first-order optimality condition gives

= 5 I, 0) +b(v,)] 1 (0)
—b(u,v) — 1 (v). (2.77)

Then, we approximate trial and test functions using the same basis function,
which gives

b (uh,vh) —1 (vh) =0. (2.78)

2.5.4 Ritz method

Ritz method discretize the energy functional of a self-adjoint problem; then,
optimize.
Applying the Galerkin approximation of the energy functional, we have

] = 2o () 1 (). (2.79)
Then, the first-order optimality condition reads
0 =D, 11 [u"]

0
- %H [amgm]

1
=5 [0(an9n,bmgm) + b (brgm: angm)] = L (bmgm)
=b (angru bmgm) -1 (bmgm) . (280)

Here, b, is the direction of the derivative.

2.5.5 Minimization of function residual
Let us define a function residual, or Galerkin error, as

Rp =u—ul (2.81)
Then, its minimization in the energy norm reads

1Rellp = min {lu—w",, (2.82)

where the energy norm is defined as

ol = b (v,v). (2.83)
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The minimization becomes equivalent with the Ritz method because

1 1

3 IRp|l = Pl (u—ulu—u")

= 1b(u,u) + 1b (uh,uh) +b (u,uh)

2 2
= %b (u,u) + 1T [u"] . (2.84)

2.5.6 Galerkin orthogonality

Let u" € U™ C U the Galerkin approximation to the variational problem

uh e cu
{ b(uh,0h) =1 (vh), VP eVhcy (2.85)
Let u denote the exact solution. Subtracting the above problem from
b (u,vh) =1 (Uh) . Yol e V!, (2.86)

we obtain the Galerkin orthogonality, which states that the error u —u” satisfies

b (u - uh,vh) =0, Wo"eVh (2.87)



18

CHAPTER 2. INTRODUCTION



Chapter 3

One-dimensional Model
Problem

3.1 Piecewise linear finite element space

The finite element method is a subclass of the Galerkin method in which the
basis functions are locally supported polynomials—nonzero only over a small
subdomain. The original domain is partitioned into N nonoverlapping subdo-
mains, called elements. Each element contains two or more nodes: typically two
boundary nodes and, if applicable, additional internal nodes. The basis function
defined over an element is also called a shape function.

As an example, consider a linear finite element space for a one-dimensional
problem, where each element consists of two nodes. Each subdomain, or el-
ement, is denoted by [x,,Z,t1], where the length of the element is h, =
Tp41 — Zn. Then, the function is approximated by

u (I) ~ Uh (1‘) = Gndn (CC) 5 (31)
where (Figure 3.1(a))
T — Tp—1 < <
Tpno1 <z <z,
hnfl ) 1
Gn = %217—95 Tn << T (3.2)

elsewhere

In the above formulation, the coefficients a,, correspond to the nodal values of
the function, given that the basis functions are normalized to have unit ampli-
tude at their respective nodes. Note that the basis functions for the boundary
nodes are “single-sided”, e.g.,

T2 77 rn<zr<ux
g={ "m0 =T=T (3.3)
0, elsewhere

The function values within the nodes are linearly interpolated (Figure 3.1(c)).

19
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It is often more convinient to represent the basis functions elementwisely as
shown in Figure 3.1(b), i.e.,

_ -
- h

Nz (§) = : (3.5)

I

Ny (§)

and (3.4)

Here, each element has two functions, where its nodal values on the element
boundaries are shared across elements.

> > e+1 e+1
NPONg NN,

Figure 3.1: Piecewise linear finite element space. (a) linear basis functions. (b)
Element-wise representation of the basis function. (¢) Linear interpolation.

Note that in the finite element method, the coefficient a,,, also referred to as
a degree-of-freedom, is identified as the value of v/ at a node x,, by construction.
Representing degree-of-freedom as a linear functional ,,, we have

(wn, uh) =l (zn), (3.6)

which is a very important property of finite element method.

3.2 Poisson’s equation

Consider a model Poisson’s equation:

ul e Y"
{ b (uh,vh) =1 (vh) , Yot eut (3.7)
where
L dul dv"
h o hY _ au” av-
b(u",0") = Nrrrr dz, (3.8)

1 1
O Ry DT
0 0
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Suppose we discretize the domain into N equal-length elements of size h =
1/N. Using linear shape functions, we have N 4 1 nodes. Then, the given weak
form is written in matrix equation as

an €R

{ b (angns bgm) = L (bmgm) s Wb € R (3.11)
Removing dependency in b,,, we have
Ka=f or Kpnam= fm, (3.12)
where
Kpn = ' dg—md&dx and f,, = /1 gm + 1dz. (3.13)
o dr dx 0

In the above, K,,, is called a stiffness matriz and f,, is called a load vector.
Note that K is symmetric, i.e., K, = K,m, because the bilinear form b is
symmetric and (Bubnov-)Garlerkin method is used. Then, the each entry reads

Koo = Oh %%dm
:/Oh ((Zh;x)zdxz/oh (-2)2@:;, (3.14a)

Ko = Oh %%dm

hd - d "
- @) e ) G

__ % (3.14b)
Ky, = Oh %%dl‘ =0, n>2, (3.14c¢)

K1 = Azh %%dz
:/Oh <dcfvz>2daj—|—/:h (;;th—x)zdx:i’ (3.144d)

e [
_ /hzh (Lzsghh_x) <C;ix;h> dr — _%7 (3.14e)
= (3.14f)
Kn-nyw-1 = %7 (3.14g)
Kn-nyn = — %, (3.14h)
Knn =2 (3.14i)
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and
h h
— h
Jo= / 90'1d$=/ Ty ==, (3.15a)
2h h 2h
2h —
fi= / g1 - ldx :/ fdx+/ Tdv = h, (3.15b)
0 o h h h
D= (3.15c¢)
In-1=h, (3.15d)
h
In=15. (3.15€)
2
or, in matrix equation,
1 -1 ) Uug 1/2
-1 2 -1 Uy 1
. -1 2 -1 Ug 1
- ) = : 1
i o 7 IRER B EAT)
-1 2 -1 UN—-2 1
-1 2 -1 UN -1 1
L —1 1 ] unN 1/2
Since ug = uy = 0, the above matrix equation is reduced to
2 -1 Uy 1
. -1 2 -1 Us 1
— - : = : 1
; | . h (3.17)
-1 2 -1 UN_2 1
-1 2 UN-—-1 1

The final expression is identical to that of the finite difference method. However,
this is a special case, and the two methods differ in general.

3.3 Element-wise formulation

Here, we will derive the same matrix equation in the previous section, how-
ever, using an element-wise formulation. While the formulation may appear
convoluted, it is actually much more straightforward from a programming per-
spective and makes it easier to introduce higher-order elements and extend to
higher dimensions.

We construct element stiffness matrices and element load vectors. Then, we
assemble them to construct a (global) stiffness matriz and a (global) load vector.

For each element, we construct

- 2 AN¢ dN¢
Fimn = /mi I dp 4% mn=12 and (3.18)
. x5
fe = / N -1dxz, m =1,2. (3.19)
w5
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or, assuming every element has the same length h,

ke :% { _11 _11 ] and (3.20)
fe=h < ig ) (3.21)
such that
N
0="> - (fceae - f€) . (3.22)
e=1

Here, af and a§ denote the coefficients at element e, which are related with the
(global) coefficients via compatiblity matrix C¢ such that a® = C¢a or

agp

ay

a; Y\ _ |00 -~ 1 0 --- 0 0 an,
(a§>_[0 0 - 01 -+ 00 ani1 | (3:23)

—Ce .

aN—1

an

Similarly, we have b¢ = C°b for the test function. Then, (3.22) becomes

0= ZN: (Cb) - (kCa— f°)

e=1

I
] =

b. ((Ce)T]%ecea _ (Ce)Tfe)

Il
-

e

L EN: ((C7kc)a- i (€7 F)
A

e=1 " — e=1
—Ke =fe

N N
=b- | Y Ka-> f°
e=1 e=1

—— N~

=K =f
=b-(Ka—f). (3.24)
In some literature, the above assemblabe is denoted by
N ~
K=|Jk and (3.25)
e=1
N ~
r=Ur (3.26)
e=1

where | J is called the assembly operator.
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3.4 Assemblage

The compatibility matrix is mostly sparse, so storing the entire matrix is ineffi-
cient in terms of both memory and computation. Sparsity is also characteristic
of the global stiffness matrix; however, its treatment will not be addressed in
these notes. In numerical implementations, we assign tags to nodes and elements
to define their connectivity, and assign IDs to degrees-of-freedoms (DOF) for
determining row and column indices for global matrices and vectors.

Consider a Poisson’s problem with non-homogeneous Dirichlet and Neumann
boundary conditions:

h h
{ ;)U(wehi{)h) — lmOd (vh) , vvh c uh ) (3'27)
where
ot (") =1 (0") + 0" (0)p—b (g v"). (3.28)
Recall that
U = {w" e H(0,1) : w" =a"g,, w"(1) =0}. (3.29)

Assume that we have discretized the domain Q = (0, 1) into 5 subdomains
with || = h = 1/5. Figure 3.2 illustrates the domain and tags for nodes and
elements.

3 1 5 4 0 2
[, O

o i s
3

0 1 4 2

Figure 3.2: Node and element tags. Tags are intentionally unordered.

Then, the connectivity, i.e., node tags for each element, is assigned as Ta-
ble 3.1.

Table 3.1: Connectivity.
Element tag | 0 1 2 3 4
Node tags (1,5) (5,4) (0,2) (3,1) (4,0)

Note that we have non-homegeneous Neumann condition on node 3 and non-
homogeneous Dirichlet condition on node 2. When assigning IDs for each DOF,
we assign lower numbers for unknown DOFs and higher numbers for prescribed
DOFs. For example, in Table 3.2, the total number of free DOF's is 4 and the
number of constrained DOFs is 1, where the ID for node 2 is assigned to 5.

Table 3.2: IDs.
Node tag 0 1 2 3 4 )

1D 0 1 5 2 3 4
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Given connectivity and ID information, we can assemble element stiffness
matrices and vectors. For instance, the element 2 is associated with nodes 0
and 2, where their IDs are 0 and 5, respectively. Namely, the element stiffnes
matrix and load vector are assemed in

and f= (3.30)

Let l::fj denote the (i,7)-th entry of the e-th element stiffness matrix, and let

ﬁ-“‘ denote the i-th entry of the corresponding element load vector. Then, the
assembled global system is written as

[ K+ EL 00 k2, 0 k2,
0 kSo + k31 k3, 0 k, 0
0 kB kB 0 0 0
K — ~ 01 00 - ~ d
k) 0 0 kL +kly Kl |0 a
0 k9, 0 K, KO, + kS| O
k2, 0 0 0 0 k3 |
(3.31)
B+
o+ 1
3
= 270 3.32
R+ 1
2
1
such that
Ky | Kys ar \ _ ( Iy N, D
[ Ko K | \a )=\ 7)1 (3:33)
—_— ————

——
=K =a =f
The above partition separates knowns from unknowns: a; are the unknown
coefficients to be determined, while ay is prescribed to be zero.
As given in (3.33), the load vector must be supplemented with the non-
homogeneous boundary data. The contribution from the non-homogeneous
Neumann data v"(0)p gives

(3.34)

(8-

S

O‘OO’B o o

Here, the vector has only a single nonzero entry because the test function evalu-
ated at any node is associated with a single basis function (as implied in (3.6)).
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Similarly, while any finite energy lift of ¢ is acceptable, it is convenient to
lift ¢ with the same basis that is used for w”. Namely,

q(x) = cngn (2) (3.35)
such that
~ _ 4 Tp=1 .
q(zpn) = { 0. otherwise ° where z,, are nodes. (3.36)

Then, the contribution from the non-homogeneous Dirichlet data b(g,v) yields

e K| K 1( 0
g (ﬁ) - _ { KJ:]{ Ki:s } ( ), where (3.37)

s qs
=(4q). (3.38)

Finally the reduced equation for solving the unknown vector ay reads

Kyrap = ff!
=fr+f7+ 7
:ff“i’f]lf\lfosqy (339)
Exercise 3.4.1 (Poisson’s problem with non-homogeneous BC) Given the
strong form:

d2
£g+u+1:0 z e (0,1)

(8){ w(0)=1 : (3.40)

du
%(1) =1

Derive weak form (W), its Galerkin approzimation (G), and matriz equation
(M) using linear shape functions.



Chapter 4

Linear Elasticity

4.1

Strong form

Here, we review linear elasticity, which consists of

Balance of momentum
dive + pw?u+f=0 or oij; + pwu; + f; = 0. (4.1)

In the above, o is the stress tensor, p is the mass density, w is the frequency,
f is the body force, and wu is the displacement.

Balance of moment of momentum

g =0 or o5 = 044 (42)

Constitutive relation
o=Cle] or o4 =Cijrien, (4.3)

where C' is the elasticity tensor and € is the strain tensor. For linear
isotropic medium, we have

Cll=pl]+nl]" +Mc[]I or
Cijrr = 1 (03051 + 0310k;) + A0k, (4.4)

where A and p are the Lamé parameters and d;; is Kronecker delta. The
above elasticity tensor satisfies the major symmetry

Cijkt = Chriij (4.5)
and the minor symmetries

Cijii = Cjim and  Cyjr = Cyjug,. (4.6)

e Strain-displacement relation

1
)T or €; == (ujj+uj;). (4.7)

1
€=3 [(grad u) + (grad u 5

27



28 CHAPTER 4. LINEAR ELASTICITY

e Cauchy’s theorem
t=on or t;=o4n;, (4.8)
where ¢ is the traction vector and n is the unit outward normal vector.
e Displacement boundary condition
u—u=0 or wu;—u; =0, wel,. (4.9)
Here, u is the prescribed displacement.
e Traction boundary condition
t—t=0 or t;—1t;, zecly. (4.10)
Here, t is the prescribed traction.

For the purpose of introducing various weak forms in the subsquent section,
we define

e compliance tensor D such that
e=D [O'} or ¢€;; = Dijklakl and (4.11)

e linearized rigid body motion

1 1
r=3 [(grad u) — (grad u)T or i =g (wi; — ujq) - (4.12)
Then the constitutive relation becomes
Dol =gradu—r or Djjuom = u;;—rij. (4.13)

Given the above notations, we consider the following elastodynamic problem:

—dive — pw?u = f in
Do) —gradu+7r=0 in{

o—ol in Q (4.14)
U = only
on =20 onI';
or, in Cartesian,

—045,5 — prui = fz in Q

Dijklo'kl — Ui  +Tij = 0 inQ

045 — O0ji in . (415)

u; =0 onl'y,

Oi5Nj = 0 on Ft

4.2 Weak forms

In this section, we provide a brief overview of several weak forms compiled
in [Demkowicz, 2023, among many other possible formulations. Similarly to
previous examples all weak forms are abstractly notated by

ueld
{ b(w,v)=1I(v),VWwey ' (4.16)

In the above, u and v are (group) trial and test functions.
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4.2.1 Trivial formulation

In this formulation, we simply multiply the strong form with test functions and
integrate over the domain. Both displacement and traction boundary conditions
are strongly imposed; therefore, there is no relaxzation.

The weak form reads

~ (divo,v) - (p?u,v) = (£,0)
(Dlo],7) — (gradu,7) + (r,7) =0 . (4.17)
(0,s) =0

In the above, the trial functions, are

u=(u,o,7). (4.18)

Their function spaces are given by

wue H (Q)* : u=0o0nT,, (4.19)
o€ H(div,Q)® : on=00onT;, and (4.20)
r=—rT e L?(Q)°. (4.21)

The corresponding test functions are

v=(v,7,5), (4.22)
where
ve L?(0)°, (4.23)
e L2 ()%, and (4.24)
s=—sT € L2(0)°. (4.25)

In the weak form (4.26), the stress tensor o is not strongly enforced to be
symmetric; instead, symmetry is imposed weakly through the third equation.
This formulation is adopted because discretizing the symmetric H(div ) space is
challenging, whereas discretizing the (anti-)symmetric L? space is comparatively
straightforward.

Alternatively, letting 7 to be symmetric, we have

— (divo,v) — (pw2u,v) = (f,v)
(Dlo],T) — (gradu,7) =0 . (4.26)
(0,8) =0

The corresponding function spaces for u = (u,0) and v = (v, 7, s) are

we H (Q)?* : u=0o0onT,, (4.27)
o€ H(div,Q)?® : on=0o0nTy, (4.28)
veL?(Q)°, (4.29)
r=7"eL?*()°%, and (4.30)
s=—s" e L?(0)°. (4.31)

Both formulations (4.17) and (4.26) are non-symmetric; therefore, the Bub-
nov—Galerkin method cannot be applied.
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4.2.2 Relaxed formulation 1

In this formulation, we relax the balance of momentum by integrating by parts,
which gives

(0, gradv) — (pw?u,v) = (f,v)
ED [3] ,78 — (gradu,7) + (r,7) =0 . (4.32)

In the above, the boundary term arising from integration by parts vanishes, as
it is incorporated into the choice of boundary conditions for the function spaces.
The function spaces for u = (u,0,7) are

wue H' () : u=0onT,, (4.33)
oceL?(Q)*?, and (4.34)
r=—rTeL?Q)?>. (4.35)

The function spaces for v = (v, 7, s) are

veH (Q)® : v=00nT,, (4.36)
re L2 (Q)*?, and (4.37)
s=—s" e L2 (0)°. (4.38)

Similarly, as before, setting o = o7 and 7 = 77, (4.32) is reduced to

(0, grad v) — (pwu,0) = (f,0)
{ (D[o],7) — (gradu,7) =0 : (4.39)

The corresponding function spaces for u = (u,0) and v = (v, 7) are
wue H' () : u=0onT,,
o=0"eL?()°,
veH'(Q)® : v=00nT,, and
T:TTELQ(Q)G.

Both formulations (4.32) and (4.39) are symmetric.

4.2.3 Reduced relaxed formulation I

Here, we replace o in the first equation of (4.39) by constitutive relation, which
gives the principle of virtual work.

(Clgradu], grad v) — (pw®u,v) = (f,v). (4.44)
The corresponding function spaces are

we H' (Q)® : u=0onT,, and (4.45)
ve H' (Q)® : v=0o0nT,. (4.46)

This formulation has the smallest number of unknowns.
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4.2.4 Relaxed formulation II

31

Here, we keep the balance of momentum as it were, and relax the constitutive

relation, which gives

— (divo,v) — (pw?u,v) = (f,v)
(Do), 7)+ (u,divr) + (r,7) =0
(0,8)=0

Then, the function spaces for u = (u, o, r) are
ue L?(Q)?,
o€ H(div,Q)® : on=00nT,, and
r=—rl eL? (Q)3

The function spaces for v = (v, 7, s) are
ve L?(Q)°,
reH(div,Q)" : Tn=00onT;, and
s=—s" e L*(Q)°.

Here, we have a symmetric function space setting.

4.2.5 Reduced relaxed formulation I1

(4.47)

(4.48)
(4.49)
(4.50)

(4.51)
(4.52)
(4.53)

Assuming w # 0, we replace u in the relaxed constitutive relation using the first

equation, i.e., balance of momentum, of (4.47). Then, we have

{ (D[o],7) = (w2p~tdive,divr) + (r,7) = (w2p~ ! f,div T)
(0,8) =0

The corresponding function spaces for u = (o,7) and v = (7, s) are
oceH(div,Q)® : on=0onTy,
r=—r’ ¢ I? (9)37
reH(div,Q)?" : 7n=00onT;, and
s=—s" e L*(Q)°.

4.2.6 Ultra weak formulation

Here, we relax both balance of momentum and constitutive relation:

(0 3) — (p0) = (.0
(Do), )+ (u,divr) + (r,7) =0
(0,8)=0

Then, the function spaces for u = (u, o, ) are
uwe L?(Q)*,
oceL2(Q)*?, and
r=—rTeL?(Q)?.

(4.54)

4.55
4.56
4.57
4.58

AAAA
o — —

(4.59)

(4.60)
(4.61)
(4.62)
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The function spaces for v = (v, 7, s) are

ve H' (Q)® : v=0o0nT,, (4.63)
T € H (div, Q)3 :™m=0onIy, and (4.64)
s=—sT e L2 (0)°. (4.65)

In addition, we may enforce symmetry of o; then (4.59) yields

(0,29 ) — (Pu.0) = (1.1)
{ (D [0—] aT) + (U/jdlv T) -+ (7" 7‘) =0 - (466)

The function spaces for u = (u,0,7) are

ue L*(Q)?°, (4.67)
c=0"cL?()°, and (4.68)
r=—rT e L?(Q)°. (4.69)

The function spaces for v = (v, 7) are
ve H' (Q)® : v=00nTl,, and (4.70)

e H(div,Q)" : Tn=0o0onT,. (4.71)

Exercise 4.2.1 (Symmetric or not) Verify for each weak form in this chap-
ter whether the bilinear form b(u,v) is symmetric or asymmetric.

4.3 Coercivity

Coercive (but not necessarily symmetric) problems are relatively easy to ensure
existence, uniqueness, and stability of solutions by Lax-Milgram Theorem and
Céa’s Lemma. Consider a weak form with a symmetric functional setting:

ueld
{b(u,v):l(v), YoelU (4.72)

We say that the given sesquilinear form is U -coercive when there exists a con-
stant o > 0 such that

allulf, <b(u,u), Yuel. (4.73)

Theorem 4.3.1 (Lax-Milgram Theorem) LetU be a Hilbert space, let b (u, v)
be a continuous and coercive sesquilinear form defined on U x U, and let 1 (v)
be a continuous anti-linear form. Then the abstract variational problem

uel
{ b(u,v)=1(), Yvel (4.74)

is then well-posed, i.e., it admits a unique solution that depends continuously
upon the data.
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Theorem 4.3.2 (Céa’s Lemma) Letb (u,v) be a continuous, or bounded, and
coercive sesquilinear form defined on Hilbert space U, i.e.,

b (u,v)] <M |ul|||v]], u,v€U (continuity) and (4.75)

b (u,u)| >allull®, weld, a>0 (coercivity). (4.76)

Let UM c U, and let u € U™ be the Bubnov-Galerkin projection of some u € U
onto subspace U", i.e.,

b(u—u ") =0, W"eu (4.77)

Then, the following stability result holds:

R R T P (179

approximation error

the best approximation error

Here, M/« is called the stability constant.
The above theorem can be proved by using coercivity, Galerkin orthogonal-
ity, and continuity such that

aHufuhHu_ |b(u7uh,u—uh)’
= |b(u—uh,u—wh+wh—uh)’
= ’b(u—uh,u—w )—l—b(u—uh,wh—uh)’
= |b(u—uh,u—wh)’
< 01— . (1:79)

which gives

M
T [ (4.80

As discussed in Section 2.5, a symmetric and coercive weak form is equivalent
to the minimization problem in the energy norm. Consequently, the stability
constant with respect to the energy norm equals one, and the weak form yields
the orthogonal projection, i.e., the best approximation error.

4.3.1 Elastostatics

As an example, we consider an elastostatic problem, i.e., w = 0, with a sym-
metric functional setting. For example, the principle of virtual work gives

b(u,v) = (Clgradu],gradv) and (4.81)
L(v) = (f,v). (4.82)

In this context, coercivity implies positive-definiteness of the stored energy.
The elasticity tensor Cjji is uniformly, or strictily, elliptic, i.e.,

CijklAijAkl Z aoAiinj, ag > 0, VA” = A]Z (483)
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Then, we have
(C [grad u] ,grad u) = (C'[e] ,€) > ag (€,€) = ag Z ||6,-]-H22(Q) . (4.84)
%,
Now consider the two theorems:

Theorem 4.3.3 (Poincaré inequality) Let 2 be a bounded domain in RY,
and let Ty is a subset of OQ with a positive measure. There exists a positive
constant a1 > 0 such that

ay |[ull3 o) < leradullisg,, Yue H'(Q) : u=0onT}. (4.85)
and

Theorem 4.3.4 (Korn’s inequality) Let Q2 be a bounded domain in RY , and
let T'y is a subset of OQ) with a positive measure. There exists a positive constant
as > 0 such that

as |lgrad 720y < > leijllia), Yue H' QY : u=0onTy.  (4.86)
,J
Then, we have the coercivity:
(Clgradu] ,gradu) >ag Y _ [leijll72q)
,J
> asag [|grad ul|7: g

> azarag |[ull} g - (4.87)

Exercise 4.3.1 (Bar problem) Consider a bar problem

d du
T EAd:U] +f=0, z€(0,1) (4.88)
u(0) =u(l)=0

Let EA (z) > k > 0 is strictly positive definite in (0,1). Prove the coercivity of
the symmetric bilinear form:
1
du dv
buv) = | LEA%ir 4.89
(u,v) A (4.89)

Ezplain how the coercivity property is reflected in the stiffness matrixz of the
discrete system when the Bubnov—Galerkin method is applied.



Chapter 5

Electromagnetism

5.1 Strong form
The time-harmonic (e™?) form of Maxwell’s equations is expressed as

curl B = —J,, —iwB (Faraday’s law)

curl H = J + iwD (Maxwell-Ampere’s law) (5.1)

divD =p (Gauss’s law) '
(

divB = pn, Gauss’s magnetic law)

Here, E and H denote the electric and magnetic fields, respectively; D is the
electric flux density (or electric displacement field), and B is the magnetic flux
density. The current and charge density are denoted by J and p, while their
hypothetical magnetic counterparts are represented by J,, and p,,. Physically,
we have J,, = 0 and p,, = 0; however, their inclusion can be useful in compu-
tational electromagnetism for maintaining formal symmetry.

For a linear medium, the constitutive relation reads

D=¢FE
{ B=pH (5.2)
where € and p are permittivity and permeability, respectively.
We have the conservation of charge:
iwp+divJ =0 and (5.3)
wpm + div J,, =0. (5.4)

If we multiply the Gauss’s law with iw and eliminate charge densities using the
conservation of charge, we have

0 =div J 4 div (iwD)
=div (J +iwD — curl H) (5.5)

=(Maxwell-Ampere’s law)

We can similarly show that Faraday’s law and Gauss’s magnetic law yields the
conservation of magnetic charge.
For boundary conditions, we have

35
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e prescribed magnetic surface current
nxE— nxE =0, onlg. (5.6)
——

S,imp
=—Jm

Here, Jﬁl’ii’“p denotes a prescribed magnetic surface current. The special
case n X E' = 0 corresponds to a perfect electric conductor (PEC).

e prescribed electric surface current

nxH—-nxH=0, onlg. (5.7)
——

:JS,imp

Here, JS:mP represents a prescribed electric surface current. A hypothet-
ical condition n x H = 0 corresponds to a perfect magnetic conductor

(PMC).
e impedance boundary condition
nx H+dE, — J%™ =0, onTy, (5.8)
where F; = —n X (n x E) is the tangential component of E and d is a

prescribed impedance.
Using the vector triple product

identity,

ax(bxe=bla-c=cla-b). 5 2 Weak forms

we have

In this section, we derive various weak forms as in elastodynamics. For sim-
plicity, we consider prescribed magnetic surface current and prescribed electric
surface current boundary conditions.

—nxX(nxE)=E—-n(n-E)
=FE;.
Note that n X E is also a tan-

gential vector because

(nxE)-n=0 5.2.1 Trivial formulation

which is rotated by /2. We multiply Faraday’s law and Maxwell-Ampere’s law with test functions and
integrate over the domain:

(curl £, G) + (iwpH,G) = — (Jpm, G)
{ (curl H, F) — (iweE, F) = (J, F) (5.9)
Here, the trial functions are
u=(E,H), (5.10)
where
EcH(curl,Q) : nx E=nx EonTg and (5.11)
HeH(curl,Q) : nxH=nxHonly. (5.12)
The test functions are
v=(FQG), (5.13)
where
FeL?()°® and (5.14)

GeL?(Q)°. (5.15)
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5.2.2 Relaxed formulation I

Here, we relax Maxwell-Ampere’s law:

(cwl B, G) + (iwuH,G) = — (Jm, G)
{ (H,cull F) — (iweE, F) = (J,F) — (n x H,F),. (5.16)
Here, the trial functions are
u=(E,H), (5.17)
where
EcH(curl,Q) : nx E=nx EonTg and (5.18)
He L?(Q)°. (5.19)
The test functions are
v=(FQ), (5.20)
where
FeH(curl,Q) : nx F=0onTg and (5.21)
GeL* (). (5.22)
5.2.3 Reduced relaxed formulation I
We use Faraday’s law to eliminate the magnetic field, which gives
(,u_lcurlE,curl F) - (wst, F)=— (u_lJm,curl F) —iw(J,F)
+iw(n x H, F). . (5.23)
Here, we have
EcH(curl,Q) : nx E=nxFEonlg and (5.24)
FeH(curl,Q) : nx F=0o0onTg. (5.25)
5.2.4 Relaxed formulation II
Here, we relax Faraday’s law:
{ (E,curl G) + (i‘wuH, G) == (Jm,G) — (nx E, G>FE (5.26)
(curl H, F) — (iweE, F) = (J, F)
The associated function spaces are:
EeL?(Q)°, (5.27)
HcH(curl,Q) : nx H=nx HonTy, (5.28)
FeL?()°, and (5.29)
GeH (curl,Q) : nxG=0onTpg. (5.30)

A-BxC=AxB-C
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5.2.5 Reduced relaxed formulation II

We eliminate the electric field using Maxwell-Ampere’s law:

(e tewrl H, cwrl G) — (w?pH,G) = (7' J, cwrl G) — iw (J, G)

—iw(n x B,G)._ (5.31)

The associated function spaces are:
HecH(curl,Q) : nx H=nx HonTyg and (5.32)
GeH(cwl,Q) : nxG=0onTy. (5.33)

5.2.6 Ultra weak formulation

Here, we relax both Faraday’s law and Maxwell-Ampere’s law:

(B, curl G) + (iwpH,G) = = (Jm,G) — (n x E_’,G>FE 534
(H,curlF)—(iwsE,F):(J,F)—<n><H,F>FH (5-34)

The associated function spaces are:
E e L?(Q)?, (5.35)
He L (), (5.36)
FeH(curl,Q) : nx F=0onTpg, and (5.37)
GeH(curl,Q) : nxG=0o0onTg. (5.38)



Chapter 6

Shape Functions

6.1 Basic properties of finite elements

Finite element method is a kind of Galerkin method with a specific process of
constructing the subspace U". In [Ciarlet, 2002], the basic properties of the
finite element space is defined by

1. Triangulation 7" is established over the set €, i.e.,
o= J K (6.1)
KeTh

where the interior of elements K have no overlap:

KPNKS =0, Yi#j. (6.2)

2. A space of finite element shape functions X (K) for each K € 7" contains
polynomials or “nearly polynomials”.

3. (Unisolvence condition) Degrees-of-freedom (DOFs) t; form a basis in the
algebraic dual of X (K), i.e.,

Here, ¢; are identified as finite element shape functions. Thus, given the
values of the DOFs, i.e., the coefficients, a function is uniquely interpo-
lated.

We define element interpolation operator as

n

Mgu=)_(¥,u)d; € X (K). (6.4)

J

6.2 H'-conforming Lagrange elements

H'-conforming elements are those for which the finite element space is a subset
of H'(Q). This holds if and only if the space is globally continuous across
element boundaries.

39
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Here, we consider the Lagrange element, which enforces C° continuity across
the element boundaries. For a Lagrange element, the element degrees-of-freedom
are defined as:

v+ X (K)2u—=u(ae) €R, (6.5)

where, a; are the Lagrange nodes.

6.2.1 Courant’s triangle

The Courant triangle refers to a Lagrange triangle of order p = 1, where the
element shape function space is the polynomial space of degree one:

X (K)=P'(K) =span {1, z,y}. (6.6)

Namely, we intend to interpolate a function v using linear shape functions such
that

Migu(x,y) = a0+ a1z + asy, (6.7)

where «; are constants to be determined. Let (x;,y;), ¢ = 0,1,2 denote the
coordinates of the vertices; then, the unisolvence condition gives

Uy = g + @19 + a2y, (68)

u; =g + o121 + asyy, and .

Uy = g + 1T + Q2Y2. (610)
Here, u;, i = 0,1,2 are the nodal values at (x;,y;). Thus, «; are uniquely
identified.

Let three vertices are (0,0), (1,0), and (0, 1); then, we have ag = ug, a3 =
—ug + u1, and as = —ugy + ug, which gives

Ogu(z,y) =uo+ (—uo +u1) x4+ (—up +u2) y

=(l-z—-—y)uw+_x ur+ y us. (6.11)
—_——— v_¢ \g/
=0 =¢1 =o

TODO: figures showing Lagrange nodes and shape functions

6.2.2 Lagrange triangle of order p

A higher-order Lagrange triangular element is constructed by introducing ad-
ditional nodes, with their total number equal to the dimension of the element’s
shape-function space. For example, for p = 3, the element has 10 nodes, and its
element shape function space is given by

X (K) = PP (K) =span {1,z,y,2% 2y, y*, 2°, 2%y, 2y*, y*} . (6.12)

The corresponding monomials for an arbitrary polynomial order p can be sys-
tematically arranged following Pascal’s triangle, as shown in Figure 6.1.
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p
p=1
pi
p:
4 4

p=4 ot 2y a2ty oyt oy

Figure 6.1: Pascal’s triangle. Dashed lines indicates monomials for Lagrange
triangle of order p = 2.

Let (21),y0)) are the Lagrange nodes. Then, the ith shape function reads

N1 ) ()
;= rTor Y-y _(p+1D)(p+2)
o= j:OHi L, 70 =2y N="—77F—" (6.13)

Here [] is the product operator, and N is the number of Lagrange nodes.

TODO: figures showing Lagrange nodes and shape functions

6.2.3 Isoparametric element

We may use a certain geometry as a master element to construct master shape
functions. Then, shape functions for an arbitrary triangle can be derive via a
map from the master element. Let K denote the master element. We define a
map Tx from K onto a physical element K, i.e.,

g K& —r=ug(f) € K. (6.14)
Thus, the space of elment shape functions are
X(K)E{aox;{l : ueX(K)} (6.15)
We also have

(bgru) = (5,) | (6.16)

where 7,21]4 are the degrees-of-freedom defined in Kandu=1to azl_(l.
Suppose zk lives in the master element space of shape functions such that

Ty = measj (). (6.17)

Here, zk ; are the coordinates of the physical element K and (;Abj are the shape
functions in the master element K. Then, we identify the that we use isopara-
metric finite element. Returning to the example of the Courant’s triangle, we
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have
r=1-&-nzo+ & x1+ n 22 and (6.18)
— ~ —~
=¢o =¢1 =¢2
y=1-&=nyo+ & i+ 1 Y (6.19)
— ~ —~
=¢o =¢1 =¢2

Note that if the element map belongs to a subspace of the shape function
space, the element is called sub-parametric. If the element map belongs to a
superspace of the shape function space, the element is called super-parametric.

The derivatives of the shape functions are derived via the chain rule:

A O dx Oy D
O¢i _ 0¢; Oy o | _| o o¢
o, “omae, " | oo || 0e op || 88 | 6
o on  On Oy
—_——
=JT
Thus, we have
grad ,¢; = J Tgrad qui. (6.21)
Similarly, one can derive
dQ2 = (det J) dQ2. (6.22)

Then, the Piola transformations read

u=7aozy and (6.23)

grad ;u = J Tgrad ¢ o . (6.24)

TODO: a figure comparing affine map and isoparametric map for a
quadratic triangle.

Note that the finite element space must be capable of representing rigid body
motions to ensure convergence toward correct results upon h-refinement [Cook,
2001]. The isoparametric formulation inherently satisfies this requirement by
guaranteeing the inclusion of rigid body motion [Demkowicz, 2023].

6.2.4 Q4 element

The finite elment space of shape functions for quadrangles is denoted by OP-4,
which is constructed as the tensor product of two one-dimensional polynomial
spaces:

QP = PP Pl (6.25)
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For example, Q4 element is constructed by

oLl —pl g p!
={1,&} ®{1,&}
= {161,862, 6182} (6.26)
Thus, the corresponding shape functions are not purely linear due to the cross-
term &1&s.
Given the Lagrange nodes located at
(§1,62) = (0,0), (1,0), (1,1), and (0,1), (6.27)
the shape functions are:
do=(1-6)1-&), (6.28a)
=& (1-&), (6.28Db)
¢2 =&16, and (6.28c¢)
$s = (1—&1)&. (6.28d)
TODO: figures showing Lagrange nodes and shape functions
6.2.5 Q9 element
Shape functions of a quadrangle of QPP are given by
bi = pSips?, a,b=0,1,2,...,p, (6.29)
where
» ,
=11 ;)__5(;()]) (6.30)

J=0: i#j

Here, £ are coordinates of Lagrange nodes.

TODO: Pascal’s triangle

For example, the Lagrange quadrangle of Q%2 are called Q9 elements. In
addition to the vertices of Q4 element, we define interior Lagrange nodes with
in the edges and the element. We have biquadratic shape functions:

e vertex shape functions (0,0), (1,0), (1,1), (0,1):

1 = ' (6.31a)
b2 = 5 ig? (6.31b)
b3 = pg' pi? (6.31c)
ba =y p§? (6.31d)
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e edge bubbles (1/2,0), (1,1/2), (1/2,1), (0,1/2):

s = 15 g’ (6.31¢)
A (6.31f)
b7 = p5' p? (6.31g)
s = g p5* (6.31h)
e clement bubble (1/2,1/2):
Po = p3' 5 (6.31i)
In the above,
¢ 1
o =2 5—5 €-1), (6.32a)
¢ 1
=26 &— 5 and (6.32b)
ps =4¢(1-¢). (6.32¢)

TODO: figures showing Lagrange nodes and shape functions

6.3 (Gauss quadrature

Gauss quadrature can be viewed as a higher-order generalization of the Riemann
sum for approximating the integral of a function. While the rectangle rule
approximates the function as piecewise constant and the trapezoidal rule as
piecewise linear, Gauss quadrature achieves higher accuracy by using higher-
order polynomials via optimally selecting integration points and weights.

The general form of the Gauss quadrature is

1 N
| r@d=> s (6.33)
-1 i=1

Here, the right-hand side represents the numerical approximation of the integral,
where & and w; denote the Gauss points and Gauss weights, respectively. For
instance, in the trapezoidal rule, the integration points and weights are given
by (&,w:) = (-1,1/2), (1,1/2).

For example, let us try to determine (§;, w;) that computes the exact integral
for a constant function f (§) = ¢o. Here, a one-point rule with £ = 0 and w = 2
is sufficient such that

/1 codx = 2¢o = f(0) - 2. (6.34)

-1
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Next, we derive a two-point rule for a linear function f (§) = ¢o + c1.

1
/ f (&) =2co = (co+ c1&1) wi + (co + c1€2) wo. (6.35)
-1

A simple and effective choice is & = 0 and wy = 0, which reduces to the
one-point rule derived previously.
We now consider a quadratic function f (&) = ¢y + c1@ + coz?. Then,

1
/ f(&) =2¢co + §C2 = (co+ c1&1 + 26]) w1 + (o + 12 + €2€3) wa. (6.36)
-1

As in the previous cases, the choice of Gauss points and weights is not unique.
Imposing symmetry, i.e., {& = —& and wy; = w,, gives

2
2co + 562 = (260 + 2615%) w1, (637)

from which we obtain the two-point rule:

(&, wi) = (\%1> , <\}§1) : (6.38)

Gauss-Legendre quadrature is generally used, where the Gauss points are
the zeros of the Legendre polynomials. N-point Gauss-Legendre rule exactly
computes the integral of polynomials of order 2V — 1.

TODO: a table of points and weights.

Changing the interval from [—1,1] to [a,b] can be done by

/ f(z)dz = / e —d{, (6.39)

b—a b+a nd dfx_b—a
9 MY T T

where

z(§) =

(6.40)

Gauss quadrature for higher dimensions can be obtained by tensor product
of a one-dimensional rule. For example, Gauss quadrature for a quadrangle
reads

/ / Fen) dedn~ 33" 1 () wi (6.41)

i=1 j=1

The quadrature rule for a triangular domain can be obtained through the
following transformation, which maps (£,7) € [-1,1]2 to (r,s) € T, where T is
a triangle with vertices located at (0,0), (1,0), and (0, 1).

L SN Ut YA )

5 1 (6.42)
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The corresponding Jacobian is

or  or 1 0
T=15 & :[_1277 m]a (6.43)
0§  On 4 4
whose determinant is
1 —
det g = 15 (6.44)

8

Thus, the quadrature rule for integration over the triangular domain becomes

N N 16
/Tf (r,s)drds ~ Z Z f(r(&,m;).s(&,nj)) wiijZ. (6.45)

i=1j=1

TODO: figures showing GQ for quadrangles and triangles

6.4 Conformity

Previously, we stated that an H!'-conforming finite element must be globally
continuous. A more rigorous understanding of this continuity requirement ne-
cessitates careful consideration of derivatives in the weak sense.

For example, let v € C§° () be a test function, where @ C R?. Then, the
integration by parts on gradients reads

—/ugradv:/vgradu—/ unv. (6.46)
Q Q o9

Let K denote an element in Q = (Jgcrn K, and wx € H' (K). The above
integration by parts yields

— [ ugradv = /vgradu — / U KN K. 6.47
/| S f vt =3 [ o (6.47)

At an interface between adjacent elements, the outward unit normal vectors on
each element, denoted by nx, point in opposite directions. Denoting the jump
of u across the interface I' by [u]., we have

—/ngradv:ZK:/KvgraduK—i—zF:/F[u}an. (6.48)

Recall the definition of weak derivative

- (u’ ¢/) = (U’ (b) ) (649)

where v is the weak derivative of u and ¢ is a test function. Then, the gradient
of u reads

gradu = Z grad u| g + Z [u]p ndr. (6.50)
K T
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Here, dr is a surface Dirac delta.

Note that grad u|x belongs to L? (K), whereas [u]. ndr does not, due to the
presence of the Dirac delta function. Therefore, to ensure H' conformity, we
require

[ulp =0, VI, (6.51)
which corresponds to global C° continuity.

Similarly, the continuity requirement for H (div,{) space is derived from
the integration by parts:

f/a:gradv:/vodivaf/ on-v. (6.52)
Q Q 19)

Applying the above formula for o|x € H (div, K), we have

f/azgradv:Z/ v~div0|K+Z/[0n]F~v
Q x VK T Jr
:Z/ ’U~diV0’|K+Z/ [on]p dr - v. (6.53)
K VK r /o
Then, the divergence reads

dive = ZdiVCT‘K JrZ[on]F(sp, (6.54)
K r
which gives

[on]. =0, VI, (6.55)

Thus, the normal component of ¢ must be continuous.
The continuity requirement for H (curl, Q) space is derived from

/E~curlF:/F-cur1E—/ (nx E)-F. (6.56)
Q Q o0

For E|x € H (curl, K), we have

/E~curlF:/F-curlE—/ (nx E)-F
Q Q o9
:Z/F.cur1E|K+Z/[an]F~F, (6.57)
K K r /T

which implies
[nx El. =0, VI. (6.58)

Thus, the tangential component of E must be continuous.
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6.5 Multi-dimensional H' space

In elasticity, the typical unknown is the displacement field, which is a three-
dimensional vector function. When using the principle of virtual work, both
trial and test functions belong to the space H' (Q)°.

Each component of the displacement field can be interpolated independently
using an H!'-conforming element. Consequently, each Lagrange node possesses
three DOF. The interpolation within an elmenent K can be expressed as

ujx = Nijaj ik (6.59)
or
Uo| K qbo Q51 (bel 0 0 0
ul‘K = 0 0 0 ¢0 (bl ¢N71
=Uq|K
ao| K
0o 0 ... 0 a1k
0 0 ... 0 2|k . (6.60)
o 1 dN-1 :
=Nyj A3N-1|K
=aj|1K

Here, the same set of shape functions is used to interpolate each component
of the displacement field. The arrangement of N;; may vary depending on
the chosen ordering of degrees-of-freedom within the element. In the present
example, the horizontal DOFs are assigned first, followed by the vertical DOFs

(Figure 6.2).

as| K ag| K
a4 K a5/ K
ao|K a1|K

Figure 6.2: Example of element DOF ordering for a Q4 element.

Example 6.5.1 (Elastostatics) Write an algorithm to construct an ele-
ment stiffness matrixz for elastostatics using an isoparametric element and
Gauss—Legendre quadrature.

The corresponding bilinear form is

b(ua”):/vi,jcijkluk,l, (6.61)
Q
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where
AiiCiji B = Asj [ (0i1051 + 0:10k;) + A6ij0ki] B
= (1 Ai;0ik 651 Bri + 1 Ai0i10k; Bri + AAij0ij0r1 B
=pAijBij + pAijBji + AA;i By, (6.62)
For example, in two dimension, the above reduces to
A;;Cijl B = 1 (A11B11 + A12B12 + A21Ba1 + Az Bao)
+ 1 (A1 Bi1 + A12Bo1 + A21 Bia + Az Ba))
+ A (A11 + Asg) (B11 + Baa) . (6.63)

We follow the definition (6.60), where v; ; = Njq jbo and ur; = Nygaz3.
Then, element stiffness matrix reads

KggZ/ Nia,jCijkiNis,i
K

= / Ja_leia,a Cijki Jb_lINkB,b det J. (6.64)
K ~—— — ——
=Ai; () =Bri(B)

We partition the DOF vector a such that

al = ( alyy | alyy | oy, ) (6.65)
Here, a¢y = (aint0, GiNg1s -, ai.NJrN,l)T contains DOFs correspond

to u;. Then, we partition the element stiffness matrix as

kay | ka2 | kas)
K¢ = k‘(gl) k(gg) k(gg) . (6.66)
k@ | k2 | Kss)

Frome (6.60), we have Ny; = 0 for j > N, Ny; =0 for j < N or j > 2N,
and N3; = 0 for j < 2N. Thus, computation of each k() involves with
A;; and By, constructions with a structured zero pattern:

Aij (O‘) = Ja_jlﬁg)a,aémi and By (ﬂ) = ']b_ll(lgﬂ,b(snk (6.67)

Here, 9;; is Kronecker delta.
For example,

Fa © Ay = | Jidaa [ 0] 0 T By=1| Jy'bss | 0]0]", (6.68)
kaz) Ay = T Gaa | 0]0 T By=[0|J;"%ss|0]", (6.68b)
Bas) Ay = | S baa | 0] 0 T By=[0]0|J7%ss 1", (6.68)
oy = Ay = [ 0] 7560 [ 0] By = [ [0]0 17 6650)
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Note that, for given a and S, J(;jldga’a and bellqggvb can be reused for all
k(mn) calculations.
For two dimension, see Algorithm 1.
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Algorithm 1 Element stiffness matrix for 2D elasticity

1: Initialize 2N x 2N memory space for k°. > N : number of nodes
2: fori=1,2,...,Ng, do > Ngp : number of Gauss points
3: Select Gauss points and weights: &;, n;, w;
4: Compute arrays of shape functions and their derivatives at & and 7;:
by , 8;7“ , %‘% , a=1,2,...,N.
et O emmn O leceinn,

5: Compute z, v, J~ 7, and det J at & and ;.
6: fora=1,2,...,N do
7: Compute ¢, Odo/0x, and 0o, /y
8: for 5 =1,2,...,N do
9: Compute ¢g, Opg/0x, and Opg/y
10: e Compute ¥ = AupCaped Beq With
A1l = 0¢q/0x, A1z = 000 /0y, A21 =0, Az =0,
Bi1 =0¢p/0x, B1z = 0¢g/0y, Ba1 =0, By =0
11: Update kf, 5 < kg 5+t - w; - detJ
12: e Compute ¢ = AgpCupeaBeq with
A1 = 0¢a/0x, A1z = 0da /0y, A21 =0, Az =0,
B11 =0, B12 =0, By = 0¢g/0x, Bag = 0¢g/0y
13: Update kg, 5,y < kg gy + 9 w;-detJ
14: e Compute ¥ = AgpCapea Beq With
A1 =0, A9 =0, Agg = 0o /0x, Asa = 0y /0y,
B11 =0¢3/0x, Bis = 0¢3/0y, Ba1 =0, Bys =0
15: Update ky y 5 < Koy g T ¢ w;-detJ a
16: e Compute ¥ = AupCaped Beq With
A1 =0, A1 =0, Ay = a¢a/3$, Ay = 5%/5‘%
By1 =0, B12 =0, By = 0¢/0x, Bay = 0¢p/0y
17: Update ky y gin < koin iy + ¢ - wi-detJ
18: end for
19: end for

20: end for
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6.6 H’-conforming Hermite elements

Consider the Euler-Bernoulli beam problem for a simply supported beam reads

d? d?w
dx2|: de]—Qa r € (0,1)
w=0, =0
w:dgz’u v=1 (6.69)
ErZY —0, 2=0
B
w

The principle of virtual work gives

wel
{ b(wav) - l(v), Yvoeld ’ (670)

where
152 2
d°w _ d*v
1
l(v) = / qudz, and (6.72)
0
U={weH*0,1) : w0)=w(l)=0}. (6.73)
Next, we apply finite element discretization w ~ w" € U" C U, i.e., dividing
the domain into N subdomains [z;,2;11], ¢ = 0,1,..., N — 1, where 0 = zg <
x1 < ... <xy = 1. We assign two degrees-of-freedom for each node, i.e., w"

and 0" = dw” /dz. Then, wx € X (K) reads

wik (€) = do (&) W' (z;) + ¢1 (€) 0" ()
+ ¢ () " (wig1) + b3 () 0" (wig1) .- (6.74)

Let h = x;41 — x;; shape functions ¢; are

—(z = 241)° [~h + 2 (2; — 7))

do = - , (6.75a)
gy = &) (h”;_ ris1)” (6.75D)
g = T2 i Ein ol (6.75¢)
gy =& xi)zlff —Tin), (6.75d)

which enforce C''-continuity across element boundaries. The above shape func-
tions belong to cubic Hermite shape functions. Namely, the element shape
function space is the polynomial space of degree three: X (K) = P?(K) =
span {1, x, 22, $3}.
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TODO: shape functions plot

Example 6.6.1 (H2-conformity) Derive the continuity requirement for
H?-conforming finite element.
The second-order derivative of a generalized function u reads

(u,¢") = (v,9), (6.76)

where v is the second-order derivative of v and ¢ € C§° is a test function.
In general, integration by parts gives

1 2¢ B d2 dqs du 1"

Let ujx € H 2 (K) denote the function within each element. Then, we have

N-1 N—-1

bod?e i1 d2u|K dp]" dujg 17
/ usyda = Z/ pdx + Z |:UK } L ZE: {dx 4 3
N=1 .z, dgu N-1 N— du
VAR S
0v® j j=1

i= i 7j=1
N-1 Tit1 d2u 1 N—1
= / y) |2Kq5d / Z § (x — z;) pdx
i=0 V7%
1 N—-1
+ / du § (z — ;) pda. (6.78)
0 = dx j

In the above, [a], = ax41 (2:) — a)k (2;) denotes the jump at an element
interface x = x;. Thus, the second-order derivative yields:

dzu N—-1 d2u K N—-1
@ = d!E|2 + . .T — Qﬁj + Z |: :| Qﬁj). (679)
=0 i

J:1

Then, we can conclude that C'-continuity is requried for an H?2-conforming
element, i.e.,

du .
[u]lex]O, j=12,...,N -1 (6.80)
j
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6.6.1 Nodal exactness

Next, we show that the approximation w” is exact at the nodal points for the

chosen set of shape functions. Consider a Green’s function problem:

d4

Eld—xZ:(S(x—xo), z € (0,1)

g=0, =0

g=d02,g v=1 . (6.81)
dgg
T

The solution is

EIg(a:)zé(ac—mo)?’H(a:—xo)—é(l—xo)x?’

1 1
+5 (1 —m)r— (1= z,)% (6.82)

where H (z — z,) is the Heaviside step function.
Notice that the Green’s function is piecewise cubic. Therefore, g € U" when
T, is at one of nodes x;. Then, the Galerkin orthogonality gives
0=b (w —wh, g)
= (w-— wh, 6 (z — ;)
=w(z;) —w" (). (6.83)

Similarly, we can prove that the first-order derivative dw” /dz is also exact
at nodes. Here, the corresponding Green’s function satisfies

d4

Eld—xgz—é’(x—xo), z € (0,1)

g=0, z=0

g=dg,g =1 , (6.84)
d%g

where g is piecewise quadratic. Thus, g € U" when z, = x;, which gives

0=>b (w — wh,g)
= (w—w", —¢ (z — 2;))

=0 (z;) — 0" (). (6.85)

6.6.2 Accuracy of the higher-order derivatives

Let us take a further step by examining the accuracy of curvature, or the bending
moment, i.e., EId*w/dx?. Because we expect a jump at an element interface, we
can not apply the same approach above. Instead we find the optimal curvature
points, or Barlow points, using Taylor expansions with remainders.
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For simplicity, we work in the master coordinates £ € [—1,1]:

2x — Ty — Tj41

§= W (6.86)
The corresponding shape functions are
. _1)2
$o(§) = € 1)4(2 o) : (6.87a)
R _1)2
$1(§) = AE+ 1)8(§ D : (6.87D)
N 2(9 _
$2(§) = €+ 1)4(2 5), and (6.87c)
N 20¢
¢3(§) = i 1; « 1), (6.87d)
where their second order derivatives are
N 3
% (&) =56, (6.88a)
- h
(&) =731, (6.88b)
¢y (&) = - gf, and (6.88¢)
- h
95(6) = 7 (3¢ +1). (6.88d)
The chain rule gives
0 9005 20 and (6.89)

or  0fdx hoE
92 2\?% 92

Then, the error of curvature can be expressed as

)= (2) e = () [0 - @) @) (6.9)
\h \h ’ '
where the nodal exactness gives

" - <, 0 0
()" (€) =dla(-1) + 4 oo Hatey

_ gga(—m + %(35 S a1y — gga(m + %(35 F1)@). (6.92)

(—1) + P4a(l) + ¢
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Next, perform Taylor expansions about & = « such that

’l)(_l) :ﬁ(Oé) + (—1 — a)a’(a) + %(_1 _ 04)2”/(05)
* é(‘l —a)’a®(a) + 212(—1 —a)*a™ ()
1 5~(5
+ ("1~ @i (), (6.932)

N %(_1 )i ®(a) + ;Z(—l — @) (Cy), (6.93b)
#(1) =) + (1~ )if(0) + 51— a)%"(a)

+5(1- i) + 5.(1 - ) (a)

(= aPa®(Cy), and (6.950)

(= P (a) + 521 - ) (Cy), (6.93d)

where C; are some values in the given domain. Plugging the above into the
error formula we have

&(a) = % (1-30%) a(a) + ¥ eu®(C1) (6.94)
h2
(@) = o (1-3a%) u(a)+0 (h?), (6.95)

where @ = z («). Thus, the optimal curvature points are located at

1
V3’
for which the corresponding error is of order O (h3)
Note that these optimal curvature points correspond to the same integration
points as those used in the two-point Gauss—Legendre quadrature. We also
observe that the curvature is exact at the optimal points when each segment

[, ©;y1] is uniformly loaded, i.e., ¢ is constant. Additionally, the optimal point
is everywhere when the segment is unloaded.

=+ (6.96)

Exercise 6.6.1 (Accuracy of bar problem) Repeat the preceding analyses
on nodal exactness and derivative accuracy for the one-dimensional bar problem.
6.7 Hierarchical elements

Hierarchical elements exhibit hierarchy in two aspects: polynomial order and
dimension. The former means that higher-order shape functions include all
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lower-order ones, unlike in Lagrange elements. This property facilitates straight-
forward implementation of p-refinement. The latter refers to a dimensional hier-
archy through traces, where higher-dimensional shape functions are constructed
from lower-dimensional ones, providing a systematic framework for element def-
inition.

6.7.1 Exact sequence elements

Exact sequence elements constitute a class of hierarchical elements in which
the discrete spaces of element shape functions are consistent with the exact se-
quence of the underlying energy spaces. In addition to enabling a systematic
construction of element shape functions, exact sequence elements ensure stabil-
ity in mixed formulations. For a comprehensive discussion, see [Fuentes et al.,
2015].

The four energy spaces form a sequence:

. d .
R 24 g 80 ewt) Y g (aiv) Y 2 % gy (6.97)
The above sequence is exact, i.e.,
R (grad) = N(curl) and R (curl) =N (div). (6.98)

6.8 Summary on Lagrange shape functions

Table 6.1: Shape functions for two-noded line.

Geometry

po=1-¢ grad o = —1

p1=£ grad g =1

Shape Functions

b0 = Ho grad ¢ = grad i

¢1 = m grad 1 = grad u
Table 6.2: Shape functions for three-noded line.

Geometry

po=2(¢—3)(€E-1) grad pg = 2 (26 — 3)

p =2 (€~ 3) grad =2 (26— 3)

pe =4€(1-¢) grad puo = 4 (1 —2¢)

Shape Functions

b0 = Ko grad ¢o = grad 1o

@%1 = H1 grad le = grad ju

$2 = U2 grad ¢ = grad i
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Table 6.3: Shape functions for Q4 element.

Geometry
—1
1
p =4 gradpf' = | )
0
e =1-6 grad g’ = | )
2 2 0
uit =& gradpi’ = | )
Shape Functions
Po = 15t g grad g = pgtgrad pug® + pug?grad g
b1 = ui' grad ¢ = pii grad (g7 + pui grad i’
G = ' 1 grad gy = pii*grad 4§ + p§*grad i
b3 = pg' 2 grad ¢ = ' grad p§* + pf>grad p'

TODO: shape functions for 3D Lagrange elements.
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Time Integration

7.1 Separation of space and time variables

The finite element method (FEM) is generally applied to discretize the spatial
domain and is not commonly used for temporal discretization. This is primarily
because FEM is an implicit scheme that couples all degrees of freedom. Con-
sequently, storing and factorizing the global system encompassing both spatial
and temporal degrees of freedom would be computationally intractable and in-
consistent with the causal nature of physical problems.

A common approach for a dynamic problem is to discretize space using FEM
and discretize time using finite difference method (FDM). For example, consider
a model one-dimensional wave equation:

0 Ou (x,t) 0%u (x,t) B
u(z,t) =0, x=0,L .7
u(z,t) =u, (), t=0
t
QD) (), t=0
The above equation describes wave propagation in a bar, when Q = (0, L),
I = (0,7], E is Young’s modulus, A is cross-sectional area, and p is mass
density.
Then, the Galerkin method gives the following weak form
ul e Ut
{ b(ul, o) =1(v"), weu (7.2)

where

L g, h h L 92,k
ou ov 0 u
h o, h h
b(u",v ):/O 5 EA o der/O 52 P dr and (7.3)

L
L (v") = / folda. (7.4)
0
The associated function space is

uh = {uh(x,t) =a; (t)g; (x) : uh|t e H' (0,L), u" (0,t) = u" (L, 1) =0}.
(7.5)

99
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Here, g; (x) is the finite element basis function. Its coefficient is denoted by
a; (t), which is now a function in time.
The corresponding matrix equation reads

Mad" + Ka = F, (7.6)
where

L

M;; =/ g9ipAgjdz, (7.7)
0

K= [ 9 pa%% g an (7.8)

v )y de dx '
L

F; = / gifda. (7.9)
0

Thus. we have a linear system of ordinary differential equation in time. Thus,
we are ready to use FDM for time integration.

Transforming a higher-order system into a first-order form is convenient, as
it allows various numerical methods to be expressed in a unified and compact
manner, and facilitates their straightforward adaptation to different problems.
A representative first-order model problem is given by

iy a0

If f is continuous with respect to ¢, then the solution to above reads

y (1) = o + / £y (7)) dr. (7.11)

For example, the above second-order system (7.6) can be written in the
equivalent first-order form by defining

y = (;‘, ) (7.12)

Yo = ( to )7 and (7.13)

Up

f(y)=<M91F>—[M91K H(;‘,) (7.14)

7.2 Finite difference methods

The basic principle of the finite difference method (FDM) is to approximate
derivatives by divided differences, i.e.,

t—{tn}, y(tn) ~yn, n=0,1,...,

where y,, denotes the discrete solution values to be determined. Table 7.1 sum-
marizes several representative finite difference schemes.
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Table 7.1: Representative finite difference schemes.

method formula remarks
(forward) Euler method w = f(yn) explicit
backward Euler method 2"t —Yn — f(Ynt1) implicit
trapezoidal method w = %[f(yn.H) + f(yn)] implicit
midpoint method w = f(Yn+1) explicit

A finite difference scheme is called a one-step method if Vn > 0, u, 11 depends
only on u,,. Here, the forward and backward Euler methods and the trapezoidal
(or Crank-Nicolson) method are classified as one-step methods, while the mid-
point method is a multistep method. Note that a multistep method requires a
fictitious value u_; to obtain uj.

In terms of accuracy, the two Euler methods are first-order schemes with
an error of O(h), whereas trapezoidal and midpoint methods are second-order
schemes with an error of O(h?). The order of accuracy is determined by the

local truncation error (LTE). For F(Yn+tk, Yntk—1,---»Yn, h) = 0 as a numerical
method, define LTE,, as
LTEn = F(yn+k7 Yn+k—15---5Yn, h) (715)

For example, LTE for the Euler method reads

LTE, = F(y(tni1),y(tn), h)

_ Y(tnt1) — y(tn)
h
y(tn) + hy/(tn) + %y"(Tn) - y(tn)

= h - y/(tn) (tn S Tn S tn+1)

h
= §y”(7n) = O(h). (7.16)
Implicit methods generally require solving a system of equations at each
time step, while explicit methods compute u,1 directly in terms of the previous
values uy, k < n. For many cases, implicit methods are more stable than explicit
methods.

— f(y(tn)) (using Taylor expansion and ODE)

7.3 A-stability

A finite difference scheme is absolutely stable if for h fixed, u,, remains bounded
as n — oo. Alternatively, the absolute stability is defined on the following test
problem [Quarteroni et al., 2006]:

{rgzo =0 (7.17)

where A € C. Then, a finite difference scheme for approximating the test prob-
lem (7.17) is absolutely stable if

|yn| — 0 as n — oo. (7.18)
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Note that the solution to the test problem is y = e’
The absolute stability is generally depends on h and A, where the region of
absolute stability is defined as

A={z=h € C : |y,] > 0asn — oo}. (7.19)

For example, the forwards Euler method for approximating the test problem
gives Ynt1 = Yn + hAyn or

yn = (1+AR)", n>0. (7.20)
The absolute stability holds iff
|14+ A\ < 1, (7.21)

i.e., when Ah lies inside the unit circle centered at (—1,0) in the complex plane.
On the other hand, the backward Euler method gives

yn=(1—=AR)"", n>0. (7.22)
Thus, the absolute stability holds iff
|1 —h\ > 1. (7.23)

The regions of absolute stability for the above two methods are shown in Fig-
ure 7.1.
In addition, a method is called A-stable if

ANC_ =C_, (7.24)
where
C_={z€C : Re(z) <0}. (7.25)

A-stability is also called unconditional absolute stability. The backward Euler
and trapezoidal methods are A-stable. Note that there is no explicit method
that is A-stable.

Exercise 7.3.1 (Stability of Euler method) Approzimate the solution of

{ z/(g)) = 1—5y (t), t>0 _ (7.26)

using both the forward Euler and backward Euler methods. Present the numerical
results for various sizes of h, and discuss the observations with respect to each
method’s region of absolute stability.
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@ Im{h\} ® Im{h\}

A

Re{h\}

A-stable

Figure 7.1: Region of absolute stability. (a) forward Euler method. (b) back-
ward Euler method showing A-stability.

7.4 Runge-Kutta methods

The Runge-Kutta (RK) methods are high-order multi-stage time-integration
schemes. Their general form is expressed as

s
Ynt1 =Yn + hz br Ky, where (7.27)
k=1
5
Ke=fyn+h) apK;|. (7.28)
j=1

The method is explicit when a;; = 0 for all j > k. Here, S denotes the number

of stages, i.e., the number of function evaluations performed per time step.

Accordingly, the Runge-Kutta methods are classified as multi-stage methods.
For example, a second-order Runge-Kutta method can be written as

1 1
Ynt1 =Yn + I (§K1 =+ §K2> ) (7.29)
K1 =f(yn+0), (7.30)
Ko = f (yn + hKy). (7.31)

This scheme can be derived from the trapezoidal rule combined with the Euler
method, namely,

Yn+1 — Yn
h

[F () + f (gas1)] (use Euler to determine f (g41))

— N

=5 1f () + f (yn + 1S (ya))]- (7.32)

The standard 4th-order explicit RK method is

1 2 2 1
Yntl =Yn + h EKl + 6K2 + 6K3 + 6K4 , (7.33)
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where
K, =f (yn) )

h
Ky=f (yn + 2K1) y

h
Ky=f (Zln + 2K2) ;

Ky=f (yn + hK3) :

(7.34a)

(7.34b)

(7.34c)

(7.34d)

In general, the coefficients by, and a;;, are determined through a Taylor series
expansion of the numerical scheme and the ODE. The coefficients are selected
so that the leading terms of the local truncation error (LTE) are canceled. The
single-stage scheme corresponds to the Euler method. In practice, the number
of stages S is typically chosen between 1 and 6, since eliminating higher-order

LTE terms becomes increasingly difficult for S > 6.

Mu" + Cu' + g (u) = F,

where M is invertible.
u v
v=(4) =t 10 =(ymr- oo g )

( [fg ) - ( M’l[F*gLn*g(un)] )

Ky \ v, + BKY
(Ké’)_(M‘l[F—C(vn+’5Kf)—g(un+ZKf)])’
Ky '\ vy + RKY
(K§>_<M1[F0(vn+’5ff§)9(%+’5K§‘)]>’
K¢\ vp + hKY
(Kff)_<M‘l[F—C(vn+hK§,’)—g(un+hK§f)])

Then, we have

1., 2 2 1
1 v 2 v 2 v 1 v
'Un+1 :Un+h|:6K1+6K2+6K3+6K4:|

Example 7.4.1 (4th-order RK for 2nd-order problems) Derive the
standard 4th-order RK method for the nonlinear second-order system:

Convering the above into first-order system y’' = f (y), we have

(7.35)

(7.36)

(7.37a)
(7.37b)
(7.37¢)

(7.37d)

(7.38)

(7.39)
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7.5 Newmark method

Newmark method on
Mu" +Cu +g(u)=F

reads

h2
Upq1 = Up + hv, + > [(1-28)a, +2Bant+1] and

Unt1 =Vn + (1 —7) hay +yhan1,
where
an =M [F - Cuv, — g (un)].
In the above, § and « are parameters. Typical choices gives
e average acceleration (trapezoidal method): v =1/2 and f=1/4
e linear acceleration: v =1/2 and § =1/6

e explicit central difference: v =1/2 and =10

65
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