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Preface

This monograph is written for the course Finite Element Method offered in the
Department of Civil, Urban and Environmental Engineering at Seoul National
University.

In preparing these notes, I borrowed many parts from the following books
and lecture notes: [Hughes, 2012, Lee, 2022,Demkowicz, 2023, Engquist, 2014,
Cook, 2001,Ciarlet, 2002,Quarteroni et al., 2006].

These lecture notes are a working manuscript, subject to ongoing refine-
ment and enhancement; I welcome and greatly appreciate any reports regarding
errors, typos, or any other inaccuracies found within the notes.

Canada Goose at Flat Rock Brook Nature Center, Englewood, NJ, USA
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Chapter 1

Preliminaries

1.1 Index notation

We follow Einstein notation and use regular font for both scalars and tensors,
whose types are to be inferred from context. For example, a vector v expressed
in terms of a basis gi is written as

v = vigi. (1.1)

In most cases, we make no distinction between vectors and covectors, as a
Cartesian basis is assumed unless stated otherwise. Accordingly, we also write
v = vigi = vig

i = vigi. Similarly, the inner product between two geometric
vectors is given by

(a, b) ≡ a · b = aibi = aibi, (1.2)

where · denotes (single) contraction and ( ) indicates complex conjugation of
the subtended quantity.

1.2 Inner product and induced norm

A set equipped with inner product is called an inner product space. An inner
product is a bilinear form (or a sesquilinear form for complex vectors) such that

(·, ·) : V × V → F. (1.3)

Here F is either a real number R or a complex number C. Thus, an inner product
takes two vectors in V and returns a scalar.

In addition, an inner product must satisfy the following properties [Oden
and Demkowicz, 2017]:

• Linearity with respect to the first argument

(αu+ βv,w) = α (u,w) + β (v, w) ∀α, β ∈ F, ∀u, v, w ∈ V . (1.4)

• Conjugate symmetry

(u, v) = (v, u) ∀u, v ∈ V. (1.5)

1



2 CHAPTER 1. PRELIMINARIES

• Positive definiteness

(u, u) > 0 ∀u ̸= 0, u ∈ V . (1.6)

Note that an inner product is anti-linear with respect to the second argument,
i.e.,

(u, αv) = α (u, v) ∀α ∈ F, ∀u, v ∈ V. (1.7)

Orthogonality is defined such that

(u, v) = 0. (1.8)

Any inner product space is equipped with an induced norm such that

∥u∥ ≡
√

(u, u). (1.9)

Theorem 1.2.1 (Cauchy–Schwarz inequality) Let (·, ·) be an inner prod-
uct on a vector space V. Then, ∀u, v ∈ V,

|(u, v)| ≤ ∥u∥ ∥v∥ . (1.10)

Equality holds when u and v are linearly dependent.

Triangle inequality can be proved from the Cauchy-Schwarz inequality as

∥u+ v∥2 = (u+ v, u+ v)

= (u, u) + (u, v) + (v, u) + (v, v)

= (u, u) + 2Re {(u, v)}+ (v, v)

≤ ∥u∥2 + 2 |(u, v)|+ ∥v∥2

≤ ∥u∥2 + 2 ∥u∥ ∥v∥+ ∥v∥2

= (∥u∥+ ∥v∥)2 . (1.11)

Thus, we have ∥u+ v∥ ≤ ∥u∥+ ∥v∥.
The Cauchy–Schwarz inequality arises in numerous contexts, including the

determination of admissible function spaces in weak formulations.

1.3 Function space

In these lecture notes, we consider only Hilbert spaces:

• L2 space is an inner product space equipped with L2 norm, e.g.,

∥u∥L2(Ω) =

(∫

Ω

|u|2
)1/2

. (1.12)

• Sobolev space of the first order is

H1 (Ω) ≡
{

u ∈ L2 (Ω) : gradu ∈ L2 (Ω)
3
}

. (1.13)
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The corresponding inner product is

(u, v)H1(Ω) = (u, v) + (gradu, grad v)

=

∫

Ω

uv +

∫

Ω

gradu · grad v (1.14)

and the induced norm is

∥u∥H1(Ω) =
√

(u, u)H1(Ω). (1.15)

• Sobolev space of the k-th order is

Hk (Ω) ≡
{
u ∈ L2 (Ω) : Dαu ∈ L2 (Ω) , ∀ |α| ≤ k

}
. (1.16)

Here, Dα = ∂|α|/ (∂xα1

1 ∂xα2

2 . . . ∂xαn
n ) denotes partial derivative of order

|α| = α1 + α2 + . . .+ αn in the weak sense.

• H (div) space

H (div,Ω) =
{

u ∈ L2 (Ω)
3

: div u ∈ L2 (Ω)
}

. (1.17)

• H (curl) space

H (curl,Ω) =
{

u ∈ L2 (Ω)
3

: curlu ∈ L2 (Ω)
3
}

. (1.18)

1.4 Smoothness

Ck functions are continuous upto its k-th derivative. For example, sinx is a
C∞ function.

1.5 Differentiation

The directional derivative of a function, or a functional, u (x) with respect to x
in the direction v is defined as

Dvu ≡ lim
ϵ→0

u (x+ ϵv)− u (x)
ϵ

. (1.19)

If the map v → Dvu is linear, then the directional derivative Dvu is identified
as Gateaux differential. Then, we have

Dvu = (gradu, v) , (1.20)

where gradu is called the gradient of u.
Weak derivative of a generalized function u is defined such that

(u, ϕ′) = − (v, ϕ) . (1.21)

Here, v is the weak derivative of u and ϕ is a test function.
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1.6 Integration by parts

Integration by parts in one dimension reads

∫ 1

0

du

dx
v = [uv]

1
0 −

∫ 1

0

u
dv

dx
. (1.22)

The multi-dimensional generalization of the above equation reads

∫

Ω

∂u

∂xi
v =

∫

∂Ω

uvni −
∫

Ω

u
∂v

∂xi
. (1.23)

In the above, Ω ∈ R
N is the domain in N dimension and its boundary is

denoted by ∂Ω, and ni is the i-th component of the outward normal vector on
the boundary.

Integration by parts for divergence and curl operators are (respectively)

∫

Ω

(div u) v =

∫

∂Ω

(u · n) v −
∫

Ω

u · grad v and (1.24)

∫

Ω

curlE · F =

∫

∂Ω

(n× E) · F +

∫

Ω

E · curlF. (1.25)

In the above, u, v, E, and F are vector-valued functions and n is unit outward
normal vector. Integration by parts involves with the divergence of a two tensor,
A ∈ R

N×N , reads

∫

Ω

(divA) · v =

∫

∂Ω

(An) · v −
∫

Ω

A : grad v, (1.26)

where : denotes double contraction such that A : B = AijB
ij .



Chapter 2

Introduction

2.1 Change of basis

The (contravariant) component of a vector vi corresponds to an orthonormal
basis ei can be easily obtained by computing its projection on the basis, i.e.,

(v, ei) = vi. (2.1)

However, we need a rigorous approach for non-orthonormal bases; the con-
travariant component of a vector vi is obtained by its projection on the dual
basis gi, i.e.,

(
v, gi

)
=
(
vjgj , g

i
)
= vj

(
gj , g

i
)
= vjδij = vi. (2.2)

Here, δij is the Kronecker delta. Similarly, we can calculate the covariant com-
ponent of a vector by

(v, gi) = vi. (2.3)
Dual basis gi is defined such
that

(

gj , g
i
)

= δij , (2.4)

where δij = δij = δj
i
= δij de-

notes Kronecker delta:

δij =

{

0 i ̸= j
1 i = j

. (2.5)

We can still calculate the contravariant components of a vector using basis,
however, in a slightly convoluted way, i.e.,

(v, gi) =
(
vjgj , gi

)

= vj (gj , gi) . (2.6)

In the above, we have a system of equations, where vj are the unknowns. Thus,
we have a matrix equation Kiju

j = di, where







(g1, g1) (g1, g2) . . . (g1, gN )
(g2, g1) (g2, g2) . . . (g2, gN )

...
...

. . .
...

(gN , g1) (gN , g2) . . . (gN , gN )








︸ ︷︷ ︸

=Kij








v1

v2

...
vN








︸ ︷︷ ︸

=uj

=








(v, gi)
(v, g2)

...
(v, gN )








︸ ︷︷ ︸

=di

. (2.7)

As a special case, consider an orthogonal basis. Then the matrixKij becomes
diagonal. Thus, we have

vi =
(v, gi)

(gi, gi)
. (2.8)

5



6 CHAPTER 2. INTRODUCTION

For an orthonormal basis, (2.8) further reduces to (2.1) as (gi, gi) = 1, because
dual basis and basis are identical.

Example 2.1.1 (Coordinate transform) Calculate the component of a
vector v = 2e1 + e2 with respect to basis g1 = e1 and g2 = e1 + e2.
Expanding the (2.6), we have

v1g1 · g1 + v2g2 · g1 = v · g1 and (2.9a)

v1g1 · g2 + v2g2 · g2 = v · g2. (2.9b)

In the above, we have g1 ·g1 = e1 ·e1 = 1, g1 ·g2 = g2 ·g1 = e1 ·(e1 + e2) = 1,
g2 · g2 = (e1 + e2) · (e1 + e2) = 2, v · g1 = (2e1 + e2) · e1 = 2, and v · g2 =
(2e1 + e2) · (e1 + e2) = 3. Rewriting (2.9) into a matrix equation, we have

[
1 1
1 2

](
v1

v2

)

=

(
2
3

)

. (2.10)

Then, the solution to the above equation is

v1 = 1, and v2 = 1. (2.11)

Alternatively, we can obtain the same result using dual bases, i.e., g1 =
e1 − e2 and g2 = e2. Then, the equation (2.2) gives

v1 = v · g1 = (2e1 + e2) · (e1 − e2) = 1 and (2.12a)

v2 = v · g2 = (2e1 + e2) · e2 = 1. (2.12b)

In summary, we have v = 2e1 + e2 = g1 + g2.

Example 2.1.2 (Fourier series) Consider an odd function f(x) defined
as below

f(x) =x, x ∈ (−0.5, 0.5). (2.13)

Find the component of sinusoidal basis, i.e.,

gn = sin (nπx) , n ∈ Z++. (2.14)

The above sinusoidal basis is orthogonal; thus, we use (2.8), where

(gn, gn) =

∫ 0.5

−0.5

sin (nπx) sin (nπx) dx = 0.5, ∀n ∈ Z++ and (2.15a)

(f, gn) =

∫ 0.5

−0.5

x sin (nπx) dx =
2 sin (nπ/2)

(nπ)
2 − cos (nπ/2)

nπ
. (2.15b)
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Then, we have

vn =
(f, gn)

(gn, gn)
=

sin (nπ/2)

(nπ)
2 − cos (nπ/2)

2nπ
. (2.16)

Finally, the function f(x) is discretized, or expressed by linear combinations
of basis gn, i.e.,

f(x) =

∞∑

n=1

(

sin (nπ/2)

(nπ)
2 − cos (nπ/2)

2nπ

)

sin (nπx) . (2.17)

2.2 Function approximation

What will happen if the choice of basis does not span the function space, e.g., a
truncated Fourier series? In such case, we have an approximation of a function.
In fact, we obtain the best approximation with respect to the norm induced by
the associated inner product. We can verify this by formulating an optimization
problem, or least square error problem: given f and gn, find v

n such that

minΠ, Π =
1

2
∥vngn − f∥2 . (2.18)

In the above, the objective functional Π is proportional to the square of the
error, measured by the induced norm, i.e.,

∥a∥ =
√

(a, a). (2.19)

The objective functional Π vanishes if and only if vngn = f ; otherwise, it will
always return a positive non-zero number. Then, the minimization problem can
be solved by satisfying the first-order optimality condition, i.e.,

0 =
∂Π

∂vn

=
1

2

∂

∂vn
(
vmgm − f, vkgk − f

)

= (vmgm − f, gn)
= vm (gm, gn)− (gn, f) . (2.20)

Thus, we have recovered the same expression as (2.6).

Example 2.2.1 (Polynomial approximation) Approximate a function
f(x) = sinx, x ∈ (−π, π) using polynomials gn = xn, n = 1, 2, . . . , N ,
N = 5.
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We use (2.6), where

(gm, gn) =

∫ π

−π

xm+ndx =
πm+n+1 − (−π)m+n+1

m+ n+ 1
, (2.21a)

(g1, sinx) = 2π, (2.21b)

(g2, sinx) = 0, (2.21c)

(g3, sinx) = 2π
(
π2 − 6

)
, (2.21d)

(g4, sinx) = 0, and (2.21e)

(g5, sinx) = 2π
(
120− 20π2 + π4

)
. (2.21f)

Then, we have v1 ≈ 0.9879, v2 = 0, v3 ≈ −0.1553, v4 = 0, and v5 ≈ 0.0056.
Figure 2.1 shows the polynomial approximations of function f using N = 3
and N = 5.

Figure 2.1: Polynomial approximations of sinx (Example 2.2.1)

Different choices of bases yield different accuracies, computational costs,
stability, etc. Finite element method is one example, where we discretize a
differential equation, therefore a function/solution, by a set of “local” basis.

2.3 Differential equation and its approximations

A differential equation can be stated abstractly as

F
(

u, x, ∂(n)x , f
)

= 0, (2.22)

where u : Fd ⊃ Ω→ F
s is the unknown function to be determined, x is the co-

ordinates, ∂
(n)
x are differential operators, and f are given data such as boundary

and initial conditions.
We assume our problems are wellposed, i.e., we require

• existence of solution

• uniqueness of solution
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• continuous dependence on data: let u and v denote solutions correspond
to data f and g, respectively, i.e., F (u, f) = 0 and F (v, g) = 0. Then,
there exists C ∈ R++ such that

∥u− v∥∗ ≤ C ∥f − g∥∗∗ . (2.23)

In general, the problem F (u) = 0 is posed in an infinite-dimensional space.
Approximation involves reducing the problem to a finite-dimensional problem
Fh(uh) = 0 and solving the resulting system to find uh, which is a finite-
dimensional representation of u. We may consider various representation strate-
gies such as (Figure 2.2) (a) pointwise representation; (b) linear combination of
known functions, i.e., uh (x) = αigi (x); (c) local averages on finite subspaces;
and (d) particle distribution, where local density represents the function value.
These representations lead to different numerical methods including (a) Finite

(a) (b) (c) (d)

Figure 2.2: Various representation strategies. (a) Pointwise representation. (b)
Linear combination of known functions. (c) Local averages. (d) Particle distri-
bution.

Difference Method (FDM); (b) Finite Element Method (FEM) (c) Finite Volume
Method (FVM); and (d) Particle Method (PM).

Example 2.3.1 (Finite difference method) Consider a model Pois-
son’s equation:







d2u

dx2
+ f = 0 x ∈ (0, 1)

u(0) = u(1) = 0
. (2.24)

Use central differencing to approximate, i.e., discretize, the given problem
and provide local truncation error.

We approximate a second-order derivative of a function using the central
differencing as

d2u

dx2
≈ u (x− h)− 2u (x) + u (x+ h)

h2
. (2.25)

Denoting ui+1 = u (xi + h), the above governing equation becomes

{
ui−1 − 2ui + ui+1

h2
+ fi = 0 i = 1, 2, . . . , N − 1

u0 = uN = 0
, (2.26)
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where, h = 1/N . Rewriting the above equation in a matrix equation, we
have

1

h2










2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2



















u1
u2
...

uN−2

uN−1










=










f1
f2
...

fN−2

fN−1










. (2.27)

To calculate the local truncation error, take a Taylor expansion of ui+1

about i, which gives

ui+1 =u (xi + h)

≈u (xi) + hu′ (xi) +
h2

2
u′′ (xi) +

h3

6
u′′′ (xi) +

h4

24
u′′′′ (xi) (2.28)

Then, (2.26) becomes

0 =
ui−1 − 2ui + ui+1

h2
+ fi

=
u (xi)− hu′ (xi) + h2

2 u
′′ (xi)− h3

6 u
′′′ (xi) +

h4

24u
′′′′ (xi)

h2
+
−2u (xi)

h2

+
u (xi) + hu′ (xi) +

h2

2 u
′′ (xi) +

h3

6 u
′′′ (xi) +

h4

24u
′′′′ (xi)

h2
+ f (xi)

=u′′ (xi) + f (xi) +
h2

12
u′′′′ (xi)

=O
(
h2
)
, (2.29)

which reveals the second-order convergence as we refine h.

2.4 Weak form

2.4.1 Model problem

Let us revisit the Poisson’s equation:

(S)







d2u

dx2
+ f = 0 x ∈ (0, 1)

u(0) = u(1) = 0
. (2.30)

The left-hand side of the governing equation vanishes for all x ∈ (0, 1) when u
is a true solution. Thus, the governing equation gives a pointwise requirement
of the solution, and such formulation is called a strong form.

Alternatively, a weak form focuses on the definition of the 0 on the right-
hand side; like the left-hand side of the equation, 0 is a function, or a vector.
Specifically, the function 0 returns a number 0 when inner-producted with any
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other function. Thus, we can equivalently write
∫

v

(
d2u

dx2
+ f

)

= 0, ∀v, (2.31)

which is identified as a weak form. Here, u is called a trial function and the
arbitrary function v is called a test function.

The above weak form becomes more useful when we take an integration by
parts:

0 =

∫

v

(
d2u

dx2
+ f

)

=

[

v
du

dx

]1

0

−
∫

dv

dx

du

dx
+

∫

vf. (2.32)

Here, the boundary term vanishes when the test function satisfies homogeneous
Dirichlet boundary conditions, i.e., v(0) = v(1) = 0. Then, we have

(W)

{
u ∈ U
b (u, v) = l (v) , ∀v ∈ V . (2.33)

In the above, the bilinear and linear forms are defined by

b (u, v) =

∫
dv

dx

du

dx
and (2.34)

l (v) =

∫

vf. (2.35)

u and v may be elements of different function spaces U and V. However, in the
given model problem, we derived a symmetric, or Hermitian, bilinear form by
integration by parts, which allowed to use the same function space for both trial
and test functions:

U = V =
{
w ∈ H1 (0, 1) : w(0) = w(1) = 0

}
. (2.36)

The space H1(0, 1) is chosen to ensure the bilinear form is integrable, i.e.,
∣
∣
∣
∣

(
du

dx
,
dv

dx

)∣
∣
∣
∣
<∞, (2.37)

where the Cauchy-Schwarz inequality gives
∣
∣
∣
∣

(
du

dx
,
du

dx

)∣
∣
∣
∣
≤
∥
∥
∥
∥

du

dx

∥
∥
∥
∥

∥
∥
∥
∥

du

dx

∥
∥
∥
∥
. (2.38)

2.4.2 Non-homogeneous boundary conditions

In this section, we discuss a more rigorous approach taking into account non-
homogeneous boundary conditions.

The strong form of our model problem reads:
Given f : Ω̄→ R and constants p and q, find u : Ω̄→ R, such that

(S)







d2u

dx2
+ f = 0, x ∈ Ω = (0, 1)

−du
dx

∣
∣
∣
∣
x=0

= p

u|x=1 = q

. (2.39)
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We multiply the governing equation with a test function v and integrate over
the domain.

0 =

∫ 1

0

v

(
d2u

dx2
+ f

)

dx

=

[

v
du

dx

]1

0

−
∫ 1

0

du

dx

dv

dx
dx

︸ ︷︷ ︸

=b(u,v)

+

∫ 1

0

vfdx

︸ ︷︷ ︸

=l(v)

. (2.40)

We introduce two function spaces U and V such that

U = V =
{
u ∈ H1 (Ω) : u(1) = 0

}
. (2.41)

Then, we have the following weak form:

(W)

{
u ∈ q̃ + U
b (u, v) = l (v) + v (0) p, ∀v ∈ V . (2.42)

In the above, q̃ + U denotes the algebraic sum of q̃ and U , i.e.,
q̃ + U ≡ {q̃ + w : w ∈ U} . (2.43)

Here, q̃ is an extension of q to the domain, which is called a finite energy lift of
q (Figure 2.3). Introducing the modified linear form

lmod (v) = l (v) + v (0) p− b (q̃, v) , (2.44)

we have an alternative form:

(W)

{
w ∈ U
b (w, v) = lmod (v) , ∀v ∈ V . (2.45)

In the above, we assumed that U is a subset of a larger space X and q̃ ∈ X .

Figure 2.3: Finite energy lift of q.

2.5 Galerkin method

2.5.1 Galerkin approximation of a weak form

The Galerkin approximation replaces the original function spaces to their finite-
dimensional subsets: Uh ⊂ U and Vh ⊂ V such that

Uh =

{

wh ∈ U : wh (x) =

N∑

n=1

angn (x)

}

and (2.46)

Vh =

{

wh ∈ V : wh (x) =
N∑

n=1

bnhn (x)

}

. (2.47)
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In the above, gn and hn are known basis functions and an and bn are the
coefficients. Then, we have the Galerkin approximation:

(G)

{
uh ∈ Uh

b
(
uh, vh

)
= l
(
vh
)
, ∀vh ∈ Vh . (2.48)

Thus, Galerkin method retains the original problem but approximates the func-
tion spaces.

Writing the basis functions explicitly, the Galerkin approximation yields a
matrix equation, i.e.,

(M)

{
an ∈ R

b (angn, bmhm) = l (bmhm) , ∀bm ∈ R
(2.49)

or

b (gn, hm) an = l (hm) , m = 1, 2, . . . , N. (2.50)

Here, we have the same form as (2.7).

Example 2.5.1 (Polynomial basis) Consider a model problem







d2u

dx2
+ 1 = 0, x ∈ (0, 1)

u(0) = u(1) = 0
(2.51)

or, in a weak form,

{
uh ∈ Uh

b
(
uh, vh

)
= l
(
vh
)
, ∀vh ∈ Uh . (2.52)

In the above,

b
(
uh, vh

)
=

∫ 1

0

duh

dx

dvh

dx
dx and (2.53)

l
(
vh
)
=

∫ 1

0

vh · 1dx. (2.54)

Find uh when the function space is given by

Uh =

{

wh (x) =

2∑

n=0

anx
n : wh(0) = wh(1) = 0

}

. (2.55)

Initially, we have three unknowns, a0, a1, and a2. Applying the boundary
condition, we have

a0 =0 and (2.56)

a0 + a1 + a2 =0. (2.57)

Then, we have left with only one unknown, i.e.,

uh = Ax (x− 1) . (2.58)



14 CHAPTER 2. INTRODUCTION

The matrix equationK11u1 = f1 is obtained by plugging the above function
into both trial and test functions in the weak form, where

K11 =

∫ 1

0

(2x− 1)
2
dx =

1

3
, (2.59)

u1 =A, and (2.60)

f1 =

∫ 1

0

x (x− 1) · 1dx = −1

6
(2.61)

Then, we have a = −1/2, which gives

uh = −1

2
x (x− 1) . (2.62)

The above solution coincides with the exact solution of the given problem,
which occurs when the finite-dimensional subspace happens to contain the
true solution.

We can consider a larger subspace, where uh = a0 + a1x+ a2x
2 + a3x

3.
When boundary conditions are applied, we have

uh = A1 x (x− 1)
︸ ︷︷ ︸

g1

+A2 x
(
x2 − 1

)

︸ ︷︷ ︸
g2

. (2.63)

Here, the components of the matrix equation read

K11 =

∫ 1

0

(2x− 1)
2
dx =

1

3
, (2.64)

K12 =K21 =

∫ 1

0

(2x− 1)
(
3x2 − 1

)
dx =

1

2
, (2.65)

K22 =

∫ 1

0

(
3x2 − 1

)2
dx =

4

5
, (2.66)

f1 =

∫ 1

0

x (x− 1) · 1dx = −1

6
, and (2.67)

f2 =

∫ 1

0

x
(
x2 − 1

)
· 1dx = −1

4
. (2.68)

or
[

1
3

1
2

1
2

4
5

](
A1

A2

)

=

(
− 1

6
− 1

4

)

. (2.69)

Then, we recover the same solution since A1 = −1/2 and A2 = 0.

Exercise 2.5.1 (Polynomial basis) Repeat the above example for






d2u

dx2
+ π2 sinπx = 0, x ∈ (0, 1)

u(0) = u(1) = 0
. (2.70)
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The function space is given by

Uh = Vh =

{

wh (x) =
N∑

n=1

angn (x) : gn (x) = x (xn − 1)

}

. (2.71)

Try different N and compare the solutions with the exact one:

uexact = sinπx. (2.72)

Galerkin method is classified as Bubnov-Galerkin method when Uh = Vh,
otherwise is called Petrov-Galerkin method. For self-adjoint problems, the nat-
ural, but not necessary, choice is the Bubnov-Galerkin method. In many litera-
ture, Bubnov-Galerkin method is simply called Galerkin method.

We will mainly discuss self-adjoint elliptic problems, where Galerkin approx-
imation of a weak form, weighted residual method, Galerkin approximation of
the variational principle, Ritz method (i.e., minimization of energy over the ap-
proximate space), and minimization of function residual become equivalent to
each other.

2.5.2 Weighted residual method

The weighted residual method starts with the function approximation and iden-
tifies the residual as

RE =
d2uh

dx2
+ f ̸= 0. (2.73)

Then, we have

0 =

∫

ϕmRE

=

∫ 1

0

ϕm

(
d2uh

dx2
+ f

)

dx

=

[

ϕm
duh

dx

]l

0

−
∫ 1

0

dϕm
dx

duh

dx
dx+

∫ 1

0

ϕmfdx

= − b
(
uh, ϕm

)
+ l (ϕm) , (2.74)

which becomes identical with (2.50) when ϕm = hm and uh = angn.

2.5.3 Galerkin approximation of variational principle

We assume a self-adjoint problem. Suppose the energy functional (total poten-
tial energy) is given by

Π [u] =
1

2
b (u, u)− l (u) . (2.75)

Here, self-adjoint assumption implies b is symmetric, i.e., b(u, v) = b(v, u)
∀u, v ∈ U and, therefore, U = V.
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Following the principle of minimum potential energy, we optimize, i.e., use
variational principle, the energy functional. The principle of minimum potential
energy implies that the solution u is obtained by

u = arg min
w∈U

Π [w] . (2.76)

Then, the first-order optimality condition gives

0 =DuΠ [u]

=
1

2
[b (u, v) + b (v, u)]− l (v)

= b (u, v)− l (v) . (2.77)

Then, we approximate trial and test functions using the same basis function,
which gives

b
(
uh, vh

)
− l
(
vh
)
= 0. (2.78)

2.5.4 Ritz method

Ritz method discretize the energy functional of a self-adjoint problem; then,
optimize.

Applying the Galerkin approximation of the energy functional, we have

Π
[
uh
]
=

1

2
b
(
uh, uh

)
− l
(
uh
)
. (2.79)

Then, the first-order optimality condition reads

0 =DuhΠ
[
uh
]

=
∂

∂am
Π [amgm]

=
1

2
[b (angn, bmgm) + b (bmgm, angm)]− l (bmgm)

= b (angn, bmgm)− l (bmgm) . (2.80)

Here, bm is the direction of the derivative.

2.5.5 Minimization of function residual

Let us define a function residual, or Galerkin error, as

RF = u− uh. (2.81)

Then, its minimization in the energy norm reads

∥RF ∥E = min
wh∈Uh

∥
∥u− wh

∥
∥
E
, (2.82)

where the energy norm is defined as

∥v∥2E = b (v, v) . (2.83)
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The minimization becomes equivalent with the Ritz method because

1

2
∥RF ∥2E =

1

2
b
(
u− uh, u− uh

)

=
1

2
b (u, u) +

1

2
b
(
uh, uh

)
+ b

(
u, uh

)

=
1

2
b (u, u) + Π

[
uh
]
. (2.84)

2.5.6 Galerkin orthogonality

Let uh ∈ Uh ⊂ U the Galerkin approximation to the variational problem

{
uh ∈ Uh ⊂ U
b
(
uh, vh

)
= l
(
vh
)
, ∀vh ∈ Vh ⊂ V . (2.85)

Let u denote the exact solution. Subtracting the above problem from

b
(
u, vh

)
= l
(
vh
)
, ∀vh ∈ Vh, (2.86)

we obtain the Galerkin orthogonality, which states that the error u−uh satisfies

b
(
u− uh, vh

)
= 0, ∀vh ∈ Vh. (2.87)
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Chapter 3

One-dimensional Model

Problem

3.1 Piecewise linear finite element space

The finite element method is a subclass of the Galerkin method in which the
basis functions are locally supported polynomials—nonzero only over a small
subdomain. The original domain is partitioned into N nonoverlapping subdo-
mains, called elements. Each element contains two or more nodes : typically two
boundary nodes and, if applicable, additional internal nodes. The basis function
defined over an element is also called a shape function.

As an example, consider a linear finite element space for a one-dimensional
problem, where each element consists of two nodes. Each subdomain, or el-
ement, is denoted by [xn, xn+1], where the length of the element is hn =
xn+1 − xn. Then, the function is approximated by

u (x) ≈ uh (x) = angn (x) , (3.1)

where (Figure 3.1(a))

gn =







x− xn−1

hn−1
, xn−1 ≤ x ≤ xn

xn+1 − x
hn

, xn ≤ x ≤ xn+1

0, elsewhere

. (3.2)

In the above formulation, the coefficients an correspond to the nodal values of
the function, given that the basis functions are normalized to have unit ampli-
tude at their respective nodes. Note that the basis functions for the boundary
nodes are “single-sided”, e.g.,

g1 =

{ x2 − x
h1

, x1 ≤ x ≤ x2
0, elsewhere

. (3.3)

The function values within the nodes are linearly interpolated (Figure 3.1(c)).

19
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It is often more convinient to represent the basis functions elementwisely as
shown in Figure 3.1(b), i.e.,

N1 (ξ) =
ξ2 − ξ
h

and (3.4)

N2 (ξ) =
ξ − ξ1
h

. (3.5)

Here, each element has two functions, where its nodal values on the element
boundaries are shared across elements.

(a) (b)

(c)

Figure 3.1: Piecewise linear finite element space. (a) linear basis functions. (b)
Element-wise representation of the basis function. (c) Linear interpolation.

Note that in the finite element method, the coefficient an, also referred to as
a degree-of-freedom, is identified as the value of uh at a node xn by construction.
Representing degree-of-freedom as a linear functional ψn, we have

(
ψn, u

h
)
= uh (xn) , (3.6)

which is a very important property of finite element method.

3.2 Poisson’s equation

Consider a model Poisson’s equation:

{
uh ∈ Uh

b
(
uh, vh

)
= l
(
vh
)
, ∀vh ∈ Uh , (3.7)

where

b
(
uh, vh

)
=

∫ 1

0

duh

dx

dvh

dx
dx, (3.8)

l
(
vh
)
=

∫ 1

0

vh · fdx =

∫ 1

0

vh · 1dx, and (3.9)

Uh =
{
uh = angn : uh (0) = uh (1) = 0

}
. (3.10)
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Suppose we discretize the domain into N equal-length elements of size h =
1/N . Using linear shape functions, we have N +1 nodes. Then, the given weak
form is written in matrix equation as

{
an ∈ R

b (angn, bmgm) = l (bmgm) , ∀bm ∈ R
. (3.11)

Removing dependency in bm, we have

Ka = f or Kmnam = fm, (3.12)

where

Kmn =

∫ 1

0

dgm
dx

dgn
dx

dx and fm =

∫ 1

0

gm · 1dx. (3.13)

In the above, Kmn is called a stiffness matrix and fm is called a load vector.
Note that K is symmetric, i.e., Kmn = Knm, because the bilinear form b is
symmetric and (Bubnov-)Garlerkin method is used. Then, the each entry reads

K00 =

∫ h

0

dg0
dx

dg0
dx

dx

=

∫ h

0

(
d

dx

h− x
h

)2

dx =

∫ h

0

(

− 1

h

)2

dx =
1

h
, (3.14a)

K01 =

∫ h

0

dg0
dx

dg1
dx

dx

=

∫ h

0

(
d

dx

h− x
h

)(
d

dx

x

h

)

dx =

∫ h

0

(

− 1

h

)(
1

h

)

dx

= − 1

h
, (3.14b)

K0n =

∫ h

0

dg0
dx

dgn
dx

dx = 0, n ≥ 2, (3.14c)

K11 =

∫ 2h

0

dg1
dx

dg1
dx

dx

=

∫ h

0

(
d

dx

x

h

)2

dx+

∫ 2h

h

(
d

dx

2h− x
h

)2

dx =
2

h
, (3.14d)

K12 =

∫ 2h

h

dg1
dx

dg2
dx

dx

=

∫ 2h

h

(
d

dx

2h− x
h

)(
d

dx

x− h
h

)

dx = − 1

h
, (3.14e)

... =
... (3.14f)

K(N−1)(N−1) =
2

h
, (3.14g)

K(N−1)N = − 1

h
, (3.14h)

KNN =
1

h
, (3.14i)
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and

f0 =

∫ h

0

g0 · 1dx =

∫ h

0

h− x
h

dx =
h

2
, (3.15a)

f1 =

∫ 2h

0

g1 · 1dx =

∫ h

0

x

h
dx+

∫ 2h

h

2h− x
h

dx = h, (3.15b)

... =
... (3.15c)

fN−1 =h, (3.15d)

fN =
h

2
. (3.15e)

or, in matrix equation,

1

h














1 −1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 2 −1

−1 1



























u0
u1
u2
...

uN−2

uN−1

uN














= h














1/2
1
1
...
1
1
1/2














. (3.16)

Since u0 = uN = 0, the above matrix equation is reduced to

1

h










2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2



















u1
u2
...

uN−2

uN−1










= h










1
1
...
1
1










. (3.17)

The final expression is identical to that of the finite difference method. However,
this is a special case, and the two methods differ in general.

3.3 Element-wise formulation

Here, we will derive the same matrix equation in the previous section, how-
ever, using an element-wise formulation. While the formulation may appear
convoluted, it is actually much more straightforward from a programming per-
spective and makes it easier to introduce higher-order elements and extend to
higher dimensions.

We construct element stiffness matrices and element load vectors. Then, we
assemble them to construct a (global) stiffness matrix and a (global) load vector.

For each element, we construct

k̃emn =

∫ xe
2

xe
1

dNe
m

dx

dNe
n

dx
dx, m, n = 1, 2 and (3.18)

f̃em =

∫ xe
2

xe
1

Ne
m · 1dx, m = 1, 2. (3.19)



3.3. ELEMENT-WISE FORMULATION 23

or, assuming every element has the same length h,

k̃e =
1

h

[
1 −1
−1 1

]

and (3.20)

f̃e =h

(
1/2
1/2

)

(3.21)

such that

0 =

N∑

e=1

be ·
(

k̃eae − f̃e
)

. (3.22)

Here, ae1 and ae2 denote the coefficients at element e, which are related with the
(global) coefficients via compatiblity matrix Ce such that ae = Cea or

(
ae1
ae2

)

=

[
0 0 · · · 1 0 · · · 0 0
0 0 · · · 0 1 · · · 0 0

]

︸ ︷︷ ︸

=Ce

















a0
a1
...
an
an+1

...
aN−1

aN

















. (3.23)

Similarly, we have be = Ceb for the test function. Then, (3.22) becomes

0 =

N∑

e=1

(Ceb) ·
(

k̃eCea− f̃e
)

=
N∑

e=1

b ·
(

(Ce)T k̃eCea− (Ce)T f̃e
)

= b ·







N∑

e=1

(

(Ce)T k̃eCe
)

︸ ︷︷ ︸

=Ke

a−
N∑

e=1

(

(Ce)T f̃e
)

︸ ︷︷ ︸

=fe







= b ·









N∑

e=1

Ke

︸ ︷︷ ︸

=K

a−
N∑

e=1

fe

︸ ︷︷ ︸

=f









= b · (Ka− f) . (3.24)

In some literature, the above assemblabe is denoted by

K =
N⋃

e=1

k̃e and (3.25)

f =

N⋃

e=1

f̃e, (3.26)

where
⋃

is called the assembly operator.
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3.4 Assemblage

The compatibility matrix is mostly sparse, so storing the entire matrix is ineffi-
cient in terms of both memory and computation. Sparsity is also characteristic
of the global stiffness matrix; however, its treatment will not be addressed in
these notes. In numerical implementations, we assign tags to nodes and elements
to define their connectivity, and assign IDs to degrees-of-freedoms (DOF) for
determining row and column indices for global matrices and vectors.

Consider a Poisson’s problem with non-homogeneous Dirichlet and Neumann
boundary conditions:

{
wh ∈ Uh

b
(
wh, vh

)
= lmod

(
vh
)
, ∀vh ∈ Uh , (3.27)

where

lmod
(
vh
)
= l
(
vh
)
+ vh (0) p− b

(
q̃, vh

)
. (3.28)

Recall that

Uh =
{
wh ∈ H1(0, 1) : wh = angn, w

h(1) = 0
}
. (3.29)

Assume that we have discretized the domain Ω = (0, 1) into 5 subdomains
with |Ωe| = h = 1/5. Figure 3.2 illustrates the domain and tags for nodes and
elements.

Figure 3.2: Node and element tags. Tags are intentionally unordered.

Then, the connectivity, i.e., node tags for each element, is assigned as Ta-
ble 3.1.

Table 3.1: Connectivity.
Element tag 0 1 2 3 4
Node tags (1,5) (5,4) (0,2) (3,1) (4,0)

Note that we have non-homegeneous Neumann condition on node 3 and non-
homogeneous Dirichlet condition on node 2. When assigning IDs for each DOF,
we assign lower numbers for unknown DOFs and higher numbers for prescribed
DOFs. For example, in Table 3.2, the total number of free DOFs is 4 and the
number of constrained DOFs is 1, where the ID for node 2 is assigned to 5.

Table 3.2: IDs.
Node tag 0 1 2 3 4 5
ID 0 1 5 2 3 4
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Given connectivity and ID information, we can assemble element stiffness
matrices and vectors. For instance, the element 2 is associated with nodes 0
and 2, where their IDs are 0 and 5, respectively. Namely, the element stiffnes
matrix and load vector are assemed in

K =











• •

• •











and f =











•

•











. (3.30)

Let k̃eij denote the (i, j)-th entry of the e-th element stiffness matrix, and let

f̃ei denote the i-th entry of the corresponding element load vector. Then, the
assembled global system is written as

K =












k̃200 + k̃411 0 0 k̃410 0 k̃201
0 k̃000 + k̃311 k̃310 0 k̃001 0

0 k̃301 k̃300 0 0 0

k̃401 0 0 k̃111 + k̃400 k̃110 0

0 k̃010 0 k̃101 k̃011 + k̃100 0

k̃210 0 0 0 0 k̃211












and

(3.31)

f =












f̃20 + f̃41
f̃00 + f̃31
f̃30

f̃11 + f̃40
f̃01 + f̃10
f̃21












(3.32)

such that
[
Kff Kfs

Ksf Kss

]

︸ ︷︷ ︸

=K

(
af
as

)

︸ ︷︷ ︸
=a

=

(
ff
fs

)

︸ ︷︷ ︸

=f

+fN + fD. (3.33)

The above partition separates knowns from unknowns: af are the unknown
coefficients to be determined, while as is prescribed to be zero.

As given in (3.33), the load vector must be supplemented with the non-
homogeneous boundary data. The contribution from the non-homogeneous
Neumann data vh(0)p gives

fN =

(
fNf
fNs

)

=











0
0
p
0
0
0











. (3.34)

Here, the vector has only a single nonzero entry because the test function evalu-
ated at any node is associated with a single basis function (as implied in (3.6)).
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Similarly, while any finite energy lift of q is acceptable, it is convenient to
lift q with the same basis that is used for wh. Namely,

q̃ (x) = cngn (x) (3.35)

such that

q̃ (xn) =

{
q, xn = 1
0, otherwise

, where xn are nodes. (3.36)

Then, the contribution from the non-homogeneous Dirichlet data b(q̃, v) yields

fD =

(
fDf
fDs

)

= −
[
Kff Kfs

Ksf Kss

](
0
qs

)

, where (3.37)

qs =
(
q
)
. (3.38)

Finally the reduced equation for solving the unknown vector af reads

Kffaf = fmod
f

= ff + fNf + fDf

= ff + fNf −Kfsqs. (3.39)

Exercise 3.4.1 (Poisson’s problem with non-homogeneous BC) Given the
strong form:

(S)







d2u

dx2
+ u+ 1 = 0 x ∈ (0, 1)

u(0) = 1
du

dx
(1) = 1

. (3.40)

Derive weak form (W), its Galerkin approximation (G), and matrix equation
(M) using linear shape functions.



Chapter 4

Linear Elasticity

4.1 Strong form

Here, we review linear elasticity, which consists of

• Balance of momentum

div σ + ρω2u+ f = 0 or σij,j + ρω2ui + fi = 0. (4.1)

In the above, σ is the stress tensor, ρ is the mass density, ω is the frequency,
f is the body force, and u is the displacement.

• Balance of moment of momentum

σ = σT or σij = σji. (4.2)

• Constitutive relation

σ =C [ϵ] or σij = Cijklϵkl, (4.3)

where C is the elasticity tensor and ϵ is the strain tensor. For linear
isotropic medium, we have

C [ ] =µ [ ] + µ [ ]
T
+ λtr [ ] I or

Cijkl =µ (δikδjl + δilδkj) + λδijδkl, (4.4)

where λ and µ are the Lamé parameters and δij is Kronecker delta. The
above elasticity tensor satisfies the major symmetry

Cijkl = Cklij (4.5)

and the minor symmetries

Cijkl = Cjikl and Cijkl = Cijlk. (4.6)

• Strain-displacement relation

ϵ =
1

2

[

(gradu) + (gradu)
T
]

or ϵij =
1

2
(ui,j + uj,i) . (4.7)

27
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• Cauchy’s theorem

t = σn or ti = σijnj , (4.8)

where t is the traction vector and n is the unit outward normal vector.

• Displacement boundary condition

u− ū = 0 or ui − ūi = 0, x ∈ Γu. (4.9)

Here, ū is the prescribed displacement.

• Traction boundary condition

t− t̄ = 0 or ti − t̄i, x ∈ Γt. (4.10)

Here, t̄ is the prescribed traction.

For the purpose of introducing various weak forms in the subsquent section,
we define

• compliance tensor D such that

ϵ = D [σ] or ϵij = Dijklσkl and (4.11)

• linearized rigid body motion

r =
1

2

[

(gradu)− (gradu)
T
]

or rij =
1

2
(ui,j − uj,i) . (4.12)

Then the constitutive relation becomes

D [σ] = gradu− r or Dijklσkl = ui,j − rij . (4.13)

Given the above notations, we consider the following elastodynamic problem:






−div σ − ρω2u = f in Ω
D [σ]− gradu+ r = 0 in Ω
σ − σT in Ω
u = 0 on Γu

σn = 0 on Γt

(4.14)

or, in Cartesian,






−σij,j − ρω2ui = fi in Ω
Dijklσkl − ui,j + rij = 0 in Ω
σij − σji in Ω
ui = 0 on Γu

σijnj = 0 on Γt

. (4.15)

4.2 Weak forms

In this section, we provide a brief overview of several weak forms compiled
in [Demkowicz, 2023], among many other possible formulations. Similarly to
previous examples all weak forms are abstractly notated by

{
u ∈ U
b (u, v) = l (v) , ∀v ∈ V . (4.16)

In the above, u and v are (group) trial and test functions.
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4.2.1 Trivial formulation

In this formulation, we simply multiply the strong form with test functions and
integrate over the domain. Both displacement and traction boundary conditions
are strongly imposed; therefore, there is no relaxation.

The weak form reads






− (div σ, v)−
(
ρω2u, v

)
= (f, v)

(D [σ] , τ)− (gradu, τ) + (r, τ) = 0
(σ, s) = 0

. (4.17)

In the above, the trial functions, are

u = (u, σ, r) . (4.18)

Their function spaces are given by

u ∈ H1 (Ω)
3

: u = 0 on Γu, (4.19)

σ ∈ H (div ,Ω)
3

: σn = 0 on Γt, and (4.20)

r = −rT ∈ L2 (Ω)
3
. (4.21)

The corresponding test functions are

v = (v, τ, s) , (4.22)

where

v ∈ L2 (Ω)
3
, (4.23)

τ ∈ L2 (Ω)
3×3

, and (4.24)

s = −sT ∈ L2 (Ω)
3
. (4.25)

In the weak form (4.26), the stress tensor σ is not strongly enforced to be
symmetric; instead, symmetry is imposed weakly through the third equation.
This formulation is adopted because discretizing the symmetric H(div ) space is
challenging, whereas discretizing the (anti-)symmetric L2 space is comparatively
straightforward.

Alternatively, letting τ to be symmetric, we have






− (div σ, v)−
(
ρω2u, v

)
= (f, v)

(D [σ] , τ)− (gradu, τ) = 0
(σ, s) = 0

. (4.26)

The corresponding function spaces for u = (u, σ) and v = (v, τ, s) are

u ∈ H1 (Ω)
3

: u = 0 on Γu, (4.27)

σ ∈ H (div ,Ω)
3

: σn = 0 on Γt, (4.28)

v ∈ L2 (Ω)
3
, (4.29)

τ = τT ∈ L2 (Ω)
6
, and (4.30)

s = −sT ∈ L2 (Ω)
3
. (4.31)

Both formulations (4.17) and (4.26) are non-symmetric; therefore, the Bub-
nov–Galerkin method cannot be applied.
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4.2.2 Relaxed formulation I

In this formulation, we relax the balance of momentum by integrating by parts,
which gives







(σ, grad v)−
(
ρω2u, v

)
= (f, v)

(D [σ] , τ)− (gradu, τ) + (r, τ) = 0
(σ, s) = 0

. (4.32)

In the above, the boundary term arising from integration by parts vanishes, as
it is incorporated into the choice of boundary conditions for the function spaces.

The function spaces for u = (u, σ, r) are

u ∈ H1 (Ω)
3

: u = 0 on Γu, (4.33)

σ ∈ L2 (Ω)
3×3

, and (4.34)

r = −rT ∈ L2 (Ω)
3
. (4.35)

The function spaces for v = (v, τ, s) are

v ∈ H1 (Ω)
3

: v = 0 on Γu, (4.36)

τ ∈ L2 (Ω)
3×3

, and (4.37)

s = −sT ∈ L2 (Ω)
3
. (4.38)

Similarly, as before, setting σ = σT and τ = τT , (4.32) is reduced to

{
(σ, grad v)−

(
ρω2u, v

)
= (f, v)

(D [σ] , τ)− (gradu, τ) = 0
. (4.39)

The corresponding function spaces for u = (u, σ) and v = (v, τ) are

u ∈ H1 (Ω)
3

: u = 0 on Γu, (4.40)

σ = σT ∈ L2 (Ω)
6
, (4.41)

v ∈ H1 (Ω)
3

: v = 0 on Γu, and (4.42)

τ = τT ∈ L2 (Ω)
6
. (4.43)

Both formulations (4.32) and (4.39) are symmetric.

4.2.3 Reduced relaxed formulation I

Here, we replace σ in the first equation of (4.39) by constitutive relation, which
gives the principle of virtual work.

(C [gradu] , grad v)−
(
ρω2u, v

)
= (f, v) . (4.44)

The corresponding function spaces are

u ∈ H1 (Ω)
3

: u = 0 on Γu, and (4.45)

v ∈ H1 (Ω)
3

: v = 0 on Γu. (4.46)

This formulation has the smallest number of unknowns.
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4.2.4 Relaxed formulation II

Here, we keep the balance of momentum as it were, and relax the constitutive
relation, which gives







− (div σ, v)−
(
ρω2u, v

)
= (f, v)

(D [σ] , τ) + (u, div τ) + (r, τ) = 0
(σ, s) = 0

. (4.47)

Then, the function spaces for u = (u, σ, r) are

u ∈ L2 (Ω)
3
, (4.48)

σ ∈ H (div ,Ω)
3

: σn = 0 on Γt, and (4.49)

r = −rT ∈ L2 (Ω)
3
. (4.50)

The function spaces for v = (v, τ, s) are

v ∈ L2 (Ω)
3
, (4.51)

τ ∈ H (div ,Ω)
3

: τn = 0 on Γt, and (4.52)

s = −sT ∈ L2 (Ω)
3
. (4.53)

Here, we have a symmetric function space setting.

4.2.5 Reduced relaxed formulation II

Assuming ω ̸= 0, we replace u in the relaxed constitutive relation using the first
equation, i.e., balance of momentum, of (4.47). Then, we have

{
(D [σ] , τ)−

(
ω−2ρ−1div σ, div τ

)
+ (r, τ) =

(
ω−2ρ−1f, div τ

)

(σ, s) = 0
. (4.54)

The corresponding function spaces for u = (σ, r) and v = (τ, s) are

σ ∈ H (div ,Ω)
3

: σn = 0 on Γt, (4.55)

r = −rT ∈ L2 (Ω)
3
, (4.56)

τ ∈ H (div ,Ω)
3

: τn = 0 on Γt, and (4.57)

s = −sT ∈ L2 (Ω)
3
. (4.58)

4.2.6 Ultra weak formulation

Here, we relax both balance of momentum and constitutive relation:






(σ, grad v)−
(
ρω2u, v

)
= (f, v)

(D [σ] , τ) + (u, div τ) + (r, τ) = 0
(σ, s) = 0

. (4.59)

Then, the function spaces for u = (u, σ, r) are

u ∈ L2 (Ω)
3
, (4.60)

σ ∈ L2 (Ω)
3×3

, and (4.61)

r = −rT ∈ L2 (Ω)
3
. (4.62)
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The function spaces for v = (v, τ, s) are

v ∈ H1 (Ω)
3

: v = 0 on Γu, (4.63)

τ ∈ H (div ,Ω)
3

: τn = 0 on Γt, and (4.64)

s = −sT ∈ L2 (Ω)
3
. (4.65)

In addition, we may enforce symmetry of σ; then (4.59) yields

{
(σ, grad v)−

(
ρω2u, v

)
= (f, v)

(D [σ] , τ) + (u, div τ) + (r, τ) = 0
. (4.66)

The function spaces for u = (u, σ, r) are

u ∈ L2 (Ω)
3
, (4.67)

σ = σT ∈ L2 (Ω)
6
, and (4.68)

r = −rT ∈ L2 (Ω)
3
. (4.69)

The function spaces for v = (v, τ) are

v ∈ H1 (Ω)
3

: v = 0 on Γu, and (4.70)

τ ∈ H (div ,Ω)
3

: τn = 0 on Γt. (4.71)

Exercise 4.2.1 (Symmetric or not) Verify for each weak form in this chap-
ter whether the bilinear form b (u, v) is symmetric or asymmetric.

4.3 Coercivity

Coercive (but not necessarily symmetric) problems are relatively easy to ensure
existence, uniqueness, and stability of solutions by Lax-Milgram Theorem and
Céa’s Lemma. Consider a weak form with a symmetric functional setting:

{
u ∈ U
b (u, v) = l (v) , ∀v ∈ U , (4.72)

We say that the given sesquilinear form is U-coercive when there exists a con-
stant α > 0 such that

α ∥u∥2U ≤ b (u, u) , ∀u ∈ U . (4.73)

Theorem 4.3.1 (Lax-Milgram Theorem) Let U be a Hilbert space, let b (u, v)
be a continuous and coercive sesquilinear form defined on U × U , and let l (v)
be a continuous anti-linear form. Then the abstract variational problem

{
u ∈ U
b (u, v) = l (v) , ∀v ∈ U (4.74)

is then well-posed, i.e., it admits a unique solution that depends continuously
upon the data.
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Theorem 4.3.2 (Céa’s Lemma) Let b (u, v) be a continuous, or bounded, and
coercive sesquilinear form defined on Hilbert space U , i.e.,

|b (u, v)| ≤M ∥u∥ ∥v∥ , u, v ∈ U (continuity) and (4.75)

|b (u, u)| ≥α ∥u∥2 , u ∈ U , α > 0 (coercivity). (4.76)

Let Uh ⊂ U , and let uh ∈ Uh be the Bubnov-Galerkin projection of some u ∈ U
onto subspace Uh, i.e.,

b
(
u− uh, vh

)
= 0, ∀vh ∈ Uh. (4.77)

Then, the following stability result holds:

∥
∥u− uh

∥
∥
U

︸ ︷︷ ︸

approximation error

≤ M

α
inf

wh∈Uh

∥
∥u− wh

∥
∥
U

︸ ︷︷ ︸

the best approximation error

. (4.78)

Here, M/α is called the stability constant.
The above theorem can be proved by using coercivity, Galerkin orthogonal-

ity, and continuity such that

α
∥
∥u− uh

∥
∥
2

U
≤
∣
∣b
(
u− uh, u− uh

)∣
∣

=
∣
∣b
(
u− uh, u− wh + wh − uh

)∣
∣

=
∣
∣b
(
u− uh, u− wh

)
+ b

(
u− uh, wh − uh

)∣
∣

=
∣
∣b
(
u− uh, u− wh

)∣
∣

≤M
∥
∥u− uh

∥
∥
U

∥
∥u− wh

∥
∥
U
, (4.79)

which gives

∥
∥u− uh

∥
∥
U
≤ M

α
inf

wh∈Uh

∥
∥u− wh

∥
∥
U
. (4.80)

As discussed in Section 2.5, a symmetric and coercive weak form is equivalent
to the minimization problem in the energy norm. Consequently, the stability
constant with respect to the energy norm equals one, and the weak form yields
the orthogonal projection, i.e., the best approximation error.

4.3.1 Elastostatics

As an example, we consider an elastostatic problem, i.e., ω = 0, with a sym-
metric functional setting. For example, the principle of virtual work gives

b (u, v) = (C [gradu] , grad v) and (4.81)

l (v) = (f, v) . (4.82)

In this context, coercivity implies positive-definiteness of the stored energy.
The elasticity tensor Cijkl is uniformly, or strictily, elliptic, i.e.,

CijklAijAkl ≥ a0AijAij , a0 > 0, ∀Aij = Aji. (4.83)
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Then, we have

(C [gradu] , gradu) = (C [ϵ] , ϵ) ≥ a0 (ϵ, ϵ) = a0
∑

i,j

∥ϵij∥2L2(Ω) . (4.84)

Now consider the two theorems:

Theorem 4.3.3 (Poincaré inequality) Let Ω be a bounded domain in R
N ,

and let Γ1 is a subset of ∂Ω with a positive measure. There exists a positive
constant a1 > 0 such that

a1 ∥u∥2H1(Ω) ≤ ∥gradu∥
2
L2(Ω) , ∀u ∈ H1 (Ω) : u = 0 on Γ1. (4.85)

and

Theorem 4.3.4 (Korn’s inequality) Let Ω be a bounded domain in R
N , and

let Γ1 is a subset of ∂Ω with a positive measure. There exists a positive constant
a2 > 0 such that

a2 ∥gradu∥2L2(Ω) ≤
∑

i,j

∥ϵij∥2L2(Ω) , ∀u ∈ H1 (Ω)
N

: u = 0 on Γ1. (4.86)

Then, we have the coercivity:

(C [gradu] , gradu) ≥ a0
∑

i,j

∥ϵij∥2L2(Ω)

≥ a2a0 ∥gradu∥2L2(Ω)

≥ a2a1a0 ∥u∥2H1(Ω) . (4.87)

Exercise 4.3.1 (Bar problem) Consider a bar problem







d

dx

[

EA
du

dx

]

+ f = 0, x ∈ (0, 1)

u(0) = u(1) = 0
. (4.88)

Let EA (x) ≥ k > 0 is strictly positive definite in (0, 1). Prove the coercivity of
the symmetric bilinear form:

b (u, v) =

∫ 1

0

du

dx
EA

dv

dx
dx. (4.89)

Explain how the coercivity property is reflected in the stiffness matrix of the
discrete system when the Bubnov–Galerkin method is applied.
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Electromagnetism

5.1 Strong form

The time-harmonic (eiωt) form of Maxwell’s equations is expressed as







curlE = −Jm − iωB (Faraday’s law)
curlH = J + iωD (Maxwell-Ampère’s law)
divD = ρ (Gauss’s law)
divB = ρm (Gauss’s magnetic law)

. (5.1)

Here, E and H denote the electric and magnetic fields, respectively; D is the
electric flux density (or electric displacement field), and B is the magnetic flux
density. The current and charge density are denoted by J and ρ, while their
hypothetical magnetic counterparts are represented by Jm and ρm. Physically,
we have Jm = 0 and ρm = 0; however, their inclusion can be useful in compu-
tational electromagnetism for maintaining formal symmetry.

For a linear medium, the constitutive relation reads

{
D = εE
B = µH

, (5.2)

where ε and µ are permittivity and permeability, respectively.
We have the conservation of charge:

iωρ+ div J =0 and (5.3)

iωρm + div Jm =0. (5.4)

If we multiply the Gauss’s law with iω and eliminate charge densities using the
conservation of charge, we have

0 =div J + div (iωD)

=div (J + iωD − curlH)
︸ ︷︷ ︸

=(Maxwell-Ampère’s law)

(5.5)

We can similarly show that Faraday’s law and Gauss’s magnetic law yields the
conservation of magnetic charge.

For boundary conditions, we have
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• prescribed magnetic surface current

n× E − n× Ē
︸ ︷︷ ︸

=−JS,imp
m

= 0, on ΓE . (5.6)

Here, JS,imp
m denotes a prescribed magnetic surface current. The special

case n× Ē = 0 corresponds to a perfect electric conductor (PEC).

• prescribed electric surface current

n×H − n× H̄
︸ ︷︷ ︸

=JS,imp

= 0, on ΓH . (5.7)

Here, JS,imp represents a prescribed electric surface current. A hypothet-
ical condition n × H̄ = 0 corresponds to a perfect magnetic conductor
(PMC).

• impedance boundary condition

n×H + dEt − JS,imp = 0, on Γi, (5.8)

where Et = −n × (n× E) is the tangential component of E and d is a
prescribed impedance.

Using the vector triple product
identity,

a× (b× c) = b (a · c)− c (a · b) ,

we have

−n× (n× E) =E − n (n · E)

=Et.

Note that n × E is also a tan-
gential vector because

(n× E) · n = 0,

which is rotated by π/2.

5.2 Weak forms

In this section, we derive various weak forms as in elastodynamics. For sim-
plicity, we consider prescribed magnetic surface current and prescribed electric
surface current boundary conditions.

5.2.1 Trivial formulation

We multiply Faraday’s law and Maxwell-Ampère’s law with test functions and
integrate over the domain:

{
(curlE,G) + (iωµH,G) = − (Jm, G)
(curlH,F )− (iωεE, F ) = (J, F )

(5.9)

Here, the trial functions are

u = (E,H) , (5.10)

where

E ∈ H (curl ,Ω) : n× E = n× Ē on ΓE and (5.11)

H ∈ H (curl ,Ω) : n×H = n× H̄ on ΓH . (5.12)

The test functions are

v = (F,G) , (5.13)

where

F ∈ L2 (Ω)
3

and (5.14)

G ∈ L2 (Ω)
3
. (5.15)
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5.2.2 Relaxed formulation I

Here, we relax Maxwell-Ampère’s law:

{
(curlE,G) + (iωµH,G) = − (Jm, G)
(H, curlF )− (iωεE, F ) = (J, F )−

〈
n× H̄, F

〉

ΓH

(5.16)

Here, the trial functions are

u = (E,H) , (5.17)

where

E ∈ H (curl ,Ω) : n× E = n× Ē on ΓE and (5.18)

H ∈ L2 (Ω)
3
. (5.19)

The test functions are

v = (F,G) , (5.20)

where

F ∈ H (curl ,Ω) : n× F = 0 on ΓE and (5.21)

G ∈ L2 (Ω)
3
. (5.22)

A ·B × C = A×B · C

5.2.3 Reduced relaxed formulation I

We use Faraday’s law to eliminate the magnetic field, which gives

(
µ−1curlE, curlF

)
−
(
ω2εE, F

)
= −

(
µ−1Jm, curlF

)
− iω (J, F )

+ iω
〈
n× H̄, F

〉

ΓH
. (5.23)

Here, we have

E ∈ H (curl ,Ω) : n× E = n× Ē on ΓE and (5.24)

F ∈ H (curl ,Ω) : n× F = 0 on ΓE . (5.25)

5.2.4 Relaxed formulation II

Here, we relax Faraday’s law:

{
(E, curlG) + (iωµH,G) = − (Jm, G)−

〈
n× Ē, G

〉

ΓE

(curlH,F )− (iωεE, F ) = (J, F )
(5.26)

The associated function spaces are:

E ∈ L2 (Ω)
3
, (5.27)

H ∈ H (curl ,Ω) : n×H = n× H̄ on ΓH , (5.28)

F ∈ L2 (Ω)
3
, and (5.29)

G ∈ H (curl ,Ω) : n×G = 0 on ΓH . (5.30)
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5.2.5 Reduced relaxed formulation II

We eliminate the electric field using Maxwell-Ampère’s law:

(
ε−1curlH, curlG

)
−
(
ω2µH,G

)
=
(
ε−1J, curlG

)
− iω (Jm, G)

− iω
〈
n× Ē, G

〉

ΓE
(5.31)

The associated function spaces are:

H ∈ H (curl ,Ω) : n×H = n× H̄ on ΓH and (5.32)

G ∈ H (curl ,Ω) : n×G = 0 on ΓH . (5.33)

5.2.6 Ultra weak formulation

Here, we relax both Faraday’s law and Maxwell-Ampère’s law:

{

(E, curlG) + (iωµH,G) = − (Jm, G)−
〈
n× Ē, G

〉

ΓE

(H, curlF )− (iωεE, F ) = (J, F )−
〈
n× H̄, F

〉

ΓH

(5.34)

The associated function spaces are:

E ∈ L2 (Ω)
3
, (5.35)

H ∈ L2 (Ω)
3
, (5.36)

F ∈ H (curl ,Ω) : n× F = 0 on ΓE , and (5.37)

G ∈ H (curl ,Ω) : n×G = 0 on ΓH . (5.38)



Chapter 6

Shape Functions

6.1 Basic properties of finite elements

Finite element method is a kind of Galerkin method with a specific process of
constructing the subspace Uh. In [Ciarlet, 2002], the basic properties of the
finite element space is defined by

1. Triangulation T h is established over the set Ω̄, i.e.,

Ω̄ =
⋃

K∈T h

K, (6.1)

where the interior of elements K have no overlap:

Ko
i ∩Ko

j = ∅, ∀i ̸= j. (6.2)

2. A space of finite element shape functions X (K) for each K ∈ T h contains
polynomials or “nearly polynomials”.

3. (Unisolvence condition) Degrees-of-freedom (DOFs) ψj form a basis in the
algebraic dual of X (K), i.e.,

(ψj , ϕi) = δij , ϕi ∈ X (K) . (6.3)

Here, ϕi are identified as finite element shape functions. Thus, given the
values of the DOFs, i.e., the coefficients, a function is uniquely interpo-
lated.

We define element interpolation operator as

ΠKu ≡
n∑

j

(ψj , u)ϕj ∈ X (K) . (6.4)

6.2 H1-conforming Lagrange elements

H1-conforming elements are those for which the finite element space is a subset
of H1(Ω). This holds if and only if the space is globally continuous across
element boundaries.
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Here, we consider the Lagrange element, which enforces C0 continuity across
the element boundaries. For a Lagrange element, the element degrees-of-freedom
are defined as:

ψj : X (K) ∋ u→ u (aj) ∈ R, (6.5)

where, aj are the Lagrange nodes.

6.2.1 Courant’s triangle

The Courant triangle refers to a Lagrange triangle of order p = 1, where the
element shape function space is the polynomial space of degree one:

X (K) = P1 (K) = span {1, x, y} . (6.6)

Namely, we intend to interpolate a function u using linear shape functions such
that

ΠKu (x, y) = α0 + α1x+ α2y, (6.7)

where αi are constants to be determined. Let (xi, yi), i = 0, 1, 2 denote the
coordinates of the vertices; then, the unisolvence condition gives

u0 =α0 + α1x0 + α2y0, (6.8)

u1 =α0 + α1x1 + α2y1, and (6.9)

u2 =α0 + α1x2 + α2y2. (6.10)

Here, ui, i = 0, 1, 2 are the nodal values at (xi, yi). Thus, αi are uniquely
identified.

Let three vertices are (0, 0), (1, 0), and (0, 1); then, we have α0 = u0, α1 =
−u0 + u1, and α2 = −u0 + u2, which gives

ΠKu (x, y) =u0 + (−u0 + u1)x+ (−u0 + u2) y

= (1− x− y)
︸ ︷︷ ︸

=ϕ0

u0 + x
︸︷︷︸

=ϕ1

u1 + y
︸︷︷︸

=ϕ2

u2. (6.11)

TODO: figures showing Lagrange nodes and shape functions

6.2.2 Lagrange triangle of order p

A higher-order Lagrange triangular element is constructed by introducing ad-
ditional nodes, with their total number equal to the dimension of the element’s
shape-function space. For example, for p = 3, the element has 10 nodes, and its
element shape function space is given by

X (K) = Pp (K) = span
{
1, x, y, x2, xy, y2, x3, x2y, xy2, y3

}
. (6.12)

The corresponding monomials for an arbitrary polynomial order p can be sys-
tematically arranged following Pascal’s triangle, as shown in Figure 6.1.



6.2. H1-CONFORMING LAGRANGE ELEMENTS 41

Figure 6.1: Pascal’s triangle. Dashed lines indicates monomials for Lagrange
triangle of order p = 2.

Let
(
x(j), y(j)

)
are the Lagrange nodes. Then, the ith shape function reads

ϕi =

N−1∏

j=0 : i ̸=j

x− x(j)
x(i) − x(j)

y − y(j)
y(i) − y(j) , N =

(p+ 1) (p+ 2)

2
. (6.13)

Here
∏

is the product operator, and N is the number of Lagrange nodes.

TODO: figures showing Lagrange nodes and shape functions

6.2.3 Isoparametric element

We may use a certain geometry as a master element to construct master shape
functions. Then, shape functions for an arbitrary triangle can be derive via a
map from the master element. Let K̂ denote the master element. We define a
map xK from K̂ onto a physical element K, i.e.,

xK : K̂ ∋ ξ → x = xK (ξ) ∈ K. (6.14)

Thus, the space of elment shape functions are

X (K) ≡
{

û ◦ x−1
K : û ∈ X

(

K̂
)}

. (6.15)

We also have

(ψj , u) =
(

ψ̂j , û
)

, (6.16)

where ψ̂j are the degrees-of-freedom defined in K̂ and u = û ◦ x−1
K .

Suppose xK lives in the master element space of shape functions such that

xK =
∑

j

xK,j ϕ̂j (ξ) . (6.17)

Here, xK,j are the coordinates of the physical element K and ϕ̂j are the shape

functions in the master element K̂. Then, we identify the that we use isopara-
metric finite element. Returning to the example of the Courant’s triangle, we
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have

x = (1− ξ − η)
︸ ︷︷ ︸

=ϕ̂0

x0 + ξ
︸︷︷︸

=ϕ̂1

x1 + η
︸︷︷︸

=ϕ̂2

x2 and (6.18)

y = (1− ξ − η)
︸ ︷︷ ︸

=ϕ̂0

y0 + ξ
︸︷︷︸

=ϕ̂1

y1 + η
︸︷︷︸

=ϕ̂2

y2. (6.19)

Note that if the element map belongs to a subspace of the shape function
space, the element is called sub-parametric. If the element map belongs to a
superspace of the shape function space, the element is called super-parametric.

The derivatives of the shape functions are derived via the chain rule:

∂ϕ̂i
∂ξa

=
∂ϕi
∂xb

∂xb
∂ξa

or







∂ϕ̂i
∂ξ
∂ϕ̂i
∂η







=






∂x

∂ξ

∂y

∂ξ
∂x

∂η

∂y

∂η






︸ ︷︷ ︸

=JT






∂ϕi
∂x
∂ϕi
∂y




 . (6.20)

Thus, we have

grad xϕi = J−T grad ξϕ̂i. (6.21)

Similarly, one can derive

dΩ = (det J) d̂Ω. (6.22)

Then, the Piola transformations read

u = û ◦ x−1
K and (6.23)

grad xu = J−T grad ξû ◦ x−1
K . (6.24)

TODO: a figure comparing affine map and isoparametric map for a
quadratic triangle.

Note that the finite element space must be capable of representing rigid body
motions to ensure convergence toward correct results upon h-refinement [Cook,
2001]. The isoparametric formulation inherently satisfies this requirement by
guaranteeing the inclusion of rigid body motion [Demkowicz, 2023].

6.2.4 Q4 element

The finite elment space of shape functions for quadrangles is denoted by Qp,q,
which is constructed as the tensor product of two one-dimensional polynomial
spaces:

Qp,q = Pp ⊗ Pq. (6.25)
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For example, Q4 element is constructed by

Q1,1 =P1 ⊗ P1

= {1, ξ1} ⊗ {1, ξ2}
= {1, ξ1, ξ2, ξ1ξ2} . (6.26)

Thus, the corresponding shape functions are not purely linear due to the cross-
term ξ1ξ2.

Given the Lagrange nodes located at

(ξ1, ξ2) = (0, 0), (1, 0), (1, 1), and (0, 1), (6.27)

the shape functions are:

ϕ̂0 = (1− ξ1) (1− ξ2) , (6.28a)

ϕ̂1 = ξ1 (1− ξ2) , (6.28b)

ϕ̂2 = ξ1ξ2, and (6.28c)

ϕ̂3 = (1− ξ1) ξ2. (6.28d)

TODO: figures showing Lagrange nodes and shape functions

6.2.5 Q9 element

Shape functions of a quadrangle of Qp,p are given by

ϕ̂i = µξ1
a µ

ξ2
b , a, b = 0, 1, 2, . . . , p, (6.29)

where

µξ
i =

p
∏

j=0 : i ̸=j

ξ − ξ(j)
ξ(i) − ξ(j) . (6.30)

Here, ξ(i) are coordinates of Lagrange nodes.

TODO: Pascal’s triangle

For example, the Lagrange quadrangle of Q2,2 are called Q9 elements. In
addition to the vertices of Q4 element, we define interior Lagrange nodes with
in the edges and the element. We have biquadratic shape functions:

• vertex shape functions (0, 0), (1, 0), (1, 1), (0, 1):

ϕ̂1 =µξ1
0 µ

ξ2
0 (6.31a)

ϕ̂2 =µξ1
1 µ

ξ2
0 (6.31b)

ϕ̂3 =µξ1
0 µ

ξ2
1 (6.31c)

ϕ̂4 =µξ1
1 µ

ξ2
1 (6.31d)
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• edge bubbles (1/2, 0), (1, 1/2), (1/2, 1), (0, 1/2):

ϕ̂5 =µξ1
2 µ

ξ2
0 (6.31e)

ϕ̂6 =µξ1
1 µ

ξ2
2 (6.31f)

ϕ̂7 =µξ1
2 µ

ξ2
1 (6.31g)

ϕ̂8 =µξ1
0 µ

ξ2
2 (6.31h)

• element bubble (1/2, 1/2):

ϕ̂9 = µξ1
2 µ

ξ2
2 (6.31i)

In the above,

µξ
0 =2

(

ξ − 1

2

)

(ξ − 1) , (6.32a)

µξ
1 =2ξ

(

ξ − 1

2

)

, and (6.32b)

µξ
2 =4ξ (1− ξ) . (6.32c)

TODO: figures showing Lagrange nodes and shape functions

6.3 Gauss quadrature

Gauss quadrature can be viewed as a higher-order generalization of the Riemann
sum for approximating the integral of a function. While the rectangle rule
approximates the function as piecewise constant and the trapezoidal rule as
piecewise linear, Gauss quadrature achieves higher accuracy by using higher-
order polynomials via optimally selecting integration points and weights.

The general form of the Gauss quadrature is

∫ 1

−1

f (ξ) dξ ≈
N∑

i=1

f (ξi)wi. (6.33)

Here, the right-hand side represents the numerical approximation of the integral,
where ξi and wi denote the Gauss points and Gauss weights, respectively. For
instance, in the trapezoidal rule, the integration points and weights are given
by (ξi, wi) = (−1, 1/2) , (1, 1/2).

For example, let us try to determine (ξi, wi) that computes the exact integral
for a constant function f (ξ) = c0. Here, a one-point rule with ξ = 0 and w = 2
is sufficient such that

∫ 1

−1

c0dx = 2c0 = f (0) · 2. (6.34)
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Next, we derive a two-point rule for a linear function f (ξ) = c0 + c1x.

∫ 1

−1

f (ξ) = 2c0 = (c0 + c1ξ1)w1 + (c0 + c1ξ2)w2. (6.35)

A simple and effective choice is ξ1 = 0 and w2 = 0, which reduces to the
one-point rule derived previously.

We now consider a quadratic function f (ξ) = c0 + c1x+ c2x
2. Then,

∫ 1

−1

f (ξ) = 2c0 +
2

3
c2 =

(
c0 + c1ξ1 + c2ξ

2
1

)
w1 +

(
c0 + c1ξ2 + c2ξ

2
2

)
w2. (6.36)

As in the previous cases, the choice of Gauss points and weights is not unique.
Imposing symmetry, i.e., ξ1 = −ξ2 and w1 = w2, gives

2c0 +
2

3
c2 =

(
2c0 + 2c1ξ

2
1

)
w1, (6.37)

from which we obtain the two-point rule:

(ξi, wi) =

(

− 1√
3
, 1

)

,

(
1√
3
, 1

)

. (6.38)

Gauss-Legendre quadrature is generally used, where the Gauss points are
the zeros of the Legendre polynomials. N -point Gauss-Legendre rule exactly
computes the integral of polynomials of order 2N − 1.

TODO: a table of points and weights.

Changing the interval from [−1, 1] to [a, b] can be done by

∫ b

a

f (x) dx =

∫ 1

−1

f (x (ξ))
dx

dξ
dξ, (6.39)

where

x (ξ) =
b− a
2

ξ +
b+ a

2
and

dx

dξ
=
b− a
2

. (6.40)

Gauss quadrature for higher dimensions can be obtained by tensor product
of a one-dimensional rule. For example, Gauss quadrature for a quadrangle
reads

∫ 1

−1

∫ 1

−1

f (ξ, η) dξdη ≈
N∑

i=1

N∑

j=1

f (ξi, ηj)wiwj . (6.41)

The quadrature rule for a triangular domain can be obtained through the
following transformation, which maps (ξ, η) ∈ [−1, 1]2 to (r, s) ∈ T , where T is
a triangle with vertices located at (0, 0), (1, 0), and (0, 1).

r =
1 + ξ

2
and s =

(1− ξ) (1 + η)

4
. (6.42)
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The corresponding Jacobian is

J =

[
∂r
∂ξ

∂r
∂η

∂s
∂ξ

∂s
∂η

]

=

[
1
2 0

− 1+η
4

1−ξ
4

]

, (6.43)

whose determinant is

det J =
1− ξ
8

. (6.44)

Thus, the quadrature rule for integration over the triangular domain becomes

∫

T

f (r, s) drds ≈
N∑

i=1

N∑

j=1

f (r (ξi, ηj) , s (ξi, ηj))wiwj
1− ξi
8

. (6.45)

TODO: figures showing GQ for quadrangles and triangles

6.4 Conformity

Previously, we stated that an H1-conforming finite element must be globally
continuous. A more rigorous understanding of this continuity requirement ne-
cessitates careful consideration of derivatives in the weak sense.

For example, let v ∈ C∞
0 (Ω) be a test function, where Ω ⊂ R

3. Then, the
integration by parts on gradients reads

−
∫

Ω

u grad v =

∫

Ω

v gradu−
∫

∂Ω

unv. (6.46)

Let K denote an element in Ω̄ =
⋃

K∈T h K, and u|K ∈ H1 (K). The above
integration by parts yields

−
∫

Ω

u grad v =
∑

K

∫

K

v gradu|K −
∑

K

∫

∂K

u|Kn|Kv. (6.47)

At an interface between adjacent elements, the outward unit normal vectors on
each element, denoted by n|K , point in opposite directions. Denoting the jump
of u across the interface Γ by [u]Γ, we have

−
∫

Ω

u grad v =
∑

K

∫

K

v gradu|K +
∑

Γ

∫

Γ

[u]Γ nv. (6.48)

Recall the definition of weak derivative

− (u, ϕ′) = (v, ϕ) , (6.49)

where v is the weak derivative of u and ϕ is a test function. Then, the gradient
of u reads

gradu =
∑

K

gradu|K +
∑

Γ

[u]Γ nδΓ. (6.50)
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Here, δΓ is a surface Dirac delta.

Note that gradu|K belongs to L2 (K), whereas [u]Γ nδΓ does not, due to the
presence of the Dirac delta function. Therefore, to ensure H1 conformity, we
require

[u]Γ = 0, ∀Γ, (6.51)

which corresponds to global C0 continuity.

Similarly, the continuity requirement for H (div ,Ω) space is derived from
the integration by parts:

−
∫

Ω

σ : grad v =

∫

Ω

v · div σ −
∫

∂Ω

σn · v. (6.52)

Applying the above formula for σ|K ∈ H (div ,K), we have

−
∫

Ω

σ : grad v =
∑

K

∫

K

v · div σ|K +
∑

Γ

∫

Γ

[σn]Γ · v

=
∑

K

∫

K

v · div σ|K +
∑

Γ

∫

Ω

[σn]Γ δΓ · v. (6.53)

Then, the divergence reads

div σ =
∑

K

div σ|K +
∑

Γ

[σn]Γ δΓ, (6.54)

which gives

[σn]Γ = 0, ∀Γ, (6.55)

Thus, the normal component of σ must be continuous.

The continuity requirement for H (curl ,Ω) space is derived from

∫

Ω

E · curlF =

∫

Ω

F · curlE −
∫

∂Ω

(n× E) · F. (6.56)

For E|K ∈ H (curl ,K), we have

∫

Ω

E · curlF =

∫

Ω

F · curlE −
∫

∂Ω

(n× E) · F

=
∑

K

∫

K

F · curlE|K +
∑

Γ

∫

Γ

[n× E]Γ · F, (6.57)

which implies

[n× E]Γ = 0, ∀Γ. (6.58)

Thus, the tangential component of E must be continuous.
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6.5 Multi-dimensional H1 space

In elasticity, the typical unknown is the displacement field, which is a three-
dimensional vector function. When using the principle of virtual work, both
trial and test functions belong to the space H1 (Ω)

3
.

Each component of the displacement field can be interpolated independently
using an H1-conforming element. Consequently, each Lagrange node possesses
three DOF. The interpolation within an elmenent K can be expressed as

ui|K = Nijaj|K (6.59)

or




u0|K
u1|K
u2|K





︸ ︷︷ ︸
=ui|K

=





ϕ0 ϕ1 . . . ϕN−1 0 0 . . . 0
0 0 . . . 0 ϕ0 ϕ1 . . . ϕN−1

0 0 . . . 0 0 0 . . . 0

0 0 . . . 0
0 0 . . . 0
ϕ0 ϕ1 . . . ϕN−1





︸ ︷︷ ︸

=Nij










a0|K
a1|K
a2|K
...

a3N−1|K










︸ ︷︷ ︸
=aj|K

. (6.60)

Here, the same set of shape functions is used to interpolate each component
of the displacement field. The arrangement of Nij may vary depending on
the chosen ordering of degrees-of-freedom within the element. In the present
example, the horizontal DOFs are assigned first, followed by the vertical DOFs
(Figure 6.2).

Figure 6.2: Example of element DOF ordering for a Q4 element.

Example 6.5.1 (Elastostatics) Write an algorithm to construct an ele-
ment stiffness matrix for elastostatics using an isoparametric element and
Gauss–Legendre quadrature.

The corresponding bilinear form is

b (u, v) =

∫

Ω

vi,jCijkluk,l, (6.61)
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where

AijCijklBkl =Aij [µ (δikδjl + δilδkj) + λδijδkl]Bkl

=µAijδikδjlBkl + µAijδilδkjBkl + λAijδijδklBkl

=µAijBij + µAijBji + λAiiBkk. (6.62)

For example, in two dimension, the above reduces to

AijCijklBkl =µ (A11B11 +A12B12 +A21B21 +A22B22)

+ µ (A11B11 +A12B21 +A21B12 +A22B22)

+ λ (A11 +A22) (B11 +B22) . (6.63)

We follow the definition (6.60), where vi,j = Niα,jbα and uk,l = Nkβ,laβ .
Then, element stiffness matrix reads

Ke
αβ =

∫

K

Niα,jCijklNkβ,l

=

∫

K̂

J−1
aj N̂iα,a
︸ ︷︷ ︸

=Aij(α)

Cijkl J
−1
bl N̂kβ,b
︸ ︷︷ ︸

=Bkl(β)

det J. (6.64)

We partition the DOF vector a such that

aT =
(

aT(1) aT(2) aT(3)

)

. (6.65)

Here, a(i) = (ai·N+0, ai·N+1, . . . , ai·N+N−1)
T

contains DOFs correspond
to ui. Then, we partition the element stiffness matrix as

Ke =





k(11) k(12) k(13)
k(21) k(22) k(23)
k(31) k(32) k(33)



 . (6.66)

Frome (6.60), we have N1j = 0 for j ≥ N , N2j = 0 for j < N or j ≥ 2N ,
and N3j = 0 for j < 2N . Thus, computation of each k(mn) involves with
Aij and Bkl constructions with a structured zero pattern:

Aij (α) = J−1
aj ϕ̂α,aδmi and Bkl (β) = J−1

bl ϕ̂β,bδnk. (6.67)

Here, δij is Kronecker delta.
For example,

k(11) : Aij =
[

J−1
aj ϕ̂α,a 0 0

]T

, Bij =
[

J−1
bl ϕ̂β,b 0 0

]T
, (6.68a)

k(12) : Aij =
[

J−1
aj ϕ̂α,a 0 0

]T

, Bij =
[

0 J−1
bl ϕ̂β,b 0

]T
, (6.68b)

k(13) : Aij =
[

J−1
aj ϕ̂α,a 0 0

]T

, Bij =
[

0 0 J−1
bl ϕ̂β,b

]T
, (6.68c)

k(21) : Aij =
[

0 J−1
aj ϕ̂α,a 0

]T

, Bij =
[

J−1
bl ϕ̂β,b 0 0

]T
, (6.68d)

...
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Note that, for given α and β, J−1
aj ϕ̂α,a and J−1

bl ϕ̂β,b can be reused for all
k(mn) calculations.

For two dimension, see Algorithm 1.
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Algorithm 1 Element stiffness matrix for 2D elasticity

1: Initialize 2N × 2N memory space for ke. ▷ N : number of nodes
2: for i = 1, 2, . . . , Ngp do ▷ Ngp : number of Gauss points
3: Select Gauss points and weights: ξi, ηi, wi

4: Compute arrays of shape functions and their derivatives at ξi and ηi:

ϕ̂a

∣
∣
∣
ξ=ξi,η=ηi

,
∂ϕ̂a
∂ξ

∣
∣
∣
∣
∣
ξ=ξi,η=ηi

,
∂ϕ̂a
∂η

∣
∣
∣
∣
∣
ξ=ξi,η=ηi

, a = 1, 2, . . . , N.

5: Compute x, y, J−T , and det J at ξi and ηi.
6: for α = 1, 2, . . . , N do
7: Compute ϕα, ∂ϕα/∂x, and ∂ϕα/y
8: for β = 1, 2, . . . , N do
9: Compute ϕβ , ∂ϕβ/∂x, and ∂ϕβ/y

10: • Compute ψ = AabCabcdBcd with

A11 = ∂ϕα/∂x, A12 = ∂ϕα/∂y, A21 = 0, A22 = 0,

B11 = ∂ϕβ/∂x, B12 = ∂ϕβ/∂y, B21 = 0, B22 = 0

11: Update keα,β ← keα,β + ψ · wi · det J
12: • Compute ψ = AabCabcdBcd with

A11 = ∂ϕα/∂x, A12 = ∂ϕα/∂y, A21 = 0, A22 = 0,

B11 =0, B12 = 0, B21 = ∂ϕβ/∂x, B22 = ∂ϕβ/∂y

13: Update keα,β+N ← keα,β+N + ψ · wi · det J
14: • Compute ψ = AabCabcdBcd with

A11 =0, A12 = 0, A21 = ∂ϕα/∂x, A22 = ∂ϕα/∂y,

B11 = ∂ϕβ/∂x, B12 = ∂ϕβ/∂y, B21 = 0, B22 = 0

15: Update keα+N,β ← keα+N,β + ψ · wi · det J a
16: • Compute ψ = AabCabcdBcd with

A11 =0, A12 = 0, A21 = ∂ϕα/∂x, A22 = ∂ϕα/∂y,

B11 =0, B12 = 0, B21 = ∂ϕβ/∂x, B22 = ∂ϕβ/∂y

17: Update keα+N,β+N ← keα+N,β+N + ψ · wi · det J
18: end for
19: end for
20: end for
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6.6 H2-conforming Hermite elements

Consider the Euler-Bernoulli beam problem for a simply supported beam reads







d2

dx2

[

EI
d2w

dx2

]

= q, x ∈ (0, 1)

w = 0, x = 0
w = 0, x = 1

EI
d2w

dx2
= 0, x = 0

EI
d2w

dx2
= 0, x = 1

(6.69)

The principle of virtual work gives

{
w ∈ U
b (w, v) = l (v) , ∀v ∈ U , (6.70)

where

b (w, v) =

∫ 1

0

d2w

dx2
EI

d2v

dx2
dx, (6.71)

l (v) =

∫ 1

0

qvdx, and (6.72)

U =
{
w ∈ H2 (0, 1) : w(0) = w(1) = 0

}
. (6.73)

Next, we apply finite element discretization w ≈ wh ∈ Uh ⊂ U , i.e., dividing
the domain into N subdomains [xi, xi+1], i = 0, 1, . . . , N − 1, where 0 = x0 <
x1 < . . . < xN = 1. We assign two degrees-of-freedom for each node, i.e., wh

and θh ≡ dwh/dx. Then, w|K ∈ X (K) reads

w|K (ξ) =ϕ0 (ξ)w
h (xi) + ϕ1 (ξ) θ

h (xi)

+ ϕ2 (ξ)w
h (xi+1) + ϕ3 (ξ) θ

h (xi+1) . (6.74)

Let h = xi+1 − xi; shape functions ϕj are

ϕ0 =
− (x− xi+1)

2
[−h+ 2 (xi − x)]
h3

, (6.75a)

ϕ1 =
(x− xi) (x− xi+1)

2

h2
, (6.75b)

ϕ2 =
(x− xi)2 [h+ 2 (xi+1 − x)]

h3
, and (6.75c)

ϕ3 =
(x− xi)2 (x− xi+1)

h2
, (6.75d)

which enforce C1-continuity across element boundaries. The above shape func-
tions belong to cubic Hermite shape functions. Namely, the element shape
function space is the polynomial space of degree three: X (K) = P3 (K) =
span

{
1, x, x2, x3

}
.



6.6. H2-CONFORMING HERMITE ELEMENTS 53

TODO: shape functions plot

Example 6.6.1 (H2-conformity) Derive the continuity requirement for
H2-conforming finite element.

The second-order derivative of a generalized function u reads

(u, ϕ′′) = (v, ϕ) , (6.76)

where v is the second-order derivative of u and ϕ ∈ C∞
0 is a test function.

In general, integration by parts gives

∫ 1

0

u
d2ϕ

dx2
dx =

∫ 1

0

d2u

dx2
ϕdx+

[

u
dϕ

dx

]1

0

−
[
du

dx
ϕ

]1

0

. (6.77)

Let u|K ∈ H2 (K) denote the function within each element. Then, we have

∫ 1

0

u
d2ϕ

dx2
dx =

N−1∑

i=0

∫ xi+1

xi

d2u|K

dx2
ϕdx+

N−1∑

i=0

[

u|K
dϕ

dx

]xi+1

xi

−
N−1∑

i=0

[
du|K

dx
ϕ

]xi+1

xi

=
N−1∑

i=0

∫ xi+1

xi

d2u|K

dx2
ϕdx−

N−1∑

j=1

[u]j
dϕ

dx
+

N−1∑

j=1

[
du

dx

]

j

ϕ

=
N−1∑

i=0

∫ xi+1

xi

d2u|K

dx2
ϕdx+

∫ 1

0

N−1∑

j=1

[u]j δ
′ (x− xj)ϕdx

+

∫ 1

0

N−1∑

j=1

[
du

dx

]

j

δ (x− xj)ϕdx. (6.78)

In the above, [a]i = a|K+1 (xi) − a|K (xi) denotes the jump at an element
interface x = xi. Thus, the second-order derivative yields:

d2u

dx2
=

N−1∑

i=0

d2u|K

dx2
+

N−1∑

j=1

[u]j δ
′ (x− xj) +

N−1∑

j=1

[
du

dx

]

j

δ (x− xj) . (6.79)

Then, we can conclude that C1-continuity is requried for an H2-conforming
element, i.e.,

[u]j =

[
du

dx

]

j

= 0, j = 1, 2, . . . , N − 1. (6.80)
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6.6.1 Nodal exactness

Next, we show that the approximation wh is exact at the nodal points for the
chosen set of shape functions. Consider a Green’s function problem:







EI
d4g

dx4
= δ (x− xo) , x ∈ (0, 1)

g = 0, x = 0
g = 0, x = 1

EI
d2g

dx2
= 0, x = 0

EI
d2g

dx2
= 0, x = 1

. (6.81)

The solution is

EIg (x) =
1

6
(x− xo)3H (x− xo)−

1

6
(1− xo)x3

+
1

6
(1− xo)x−

1

6
(1− xo)3 x, (6.82)

where H (x− xo) is the Heaviside step function.
Notice that the Green’s function is piecewise cubic. Therefore, g ∈ Uh when

xo is at one of nodes xi. Then, the Galerkin orthogonality gives

0 = b
(
w − wh, g

)

=
(
w − wh, δ (x− xi)

)

=w (xi)− wh (xi) . (6.83)

Similarly, we can prove that the first-order derivative dwh/dx is also exact
at nodes. Here, the corresponding Green’s function satisfies







EI
d4g

dx4
= −δ′ (x− xo) , x ∈ (0, 1)

g = 0, x = 0
g = 0, x = 1

EI
d2g

dx2
= 0, x = 0

EI
d2g

dx2
= 0, x = 1

, (6.84)

where g is piecewise quadratic. Thus, g ∈ Uh when xo = xi, which gives

0 = b
(
w − wh, g

)

=
(
w − wh,−δ′ (x− xi)

)

= θ (xi)− θh (xi) . (6.85)

6.6.2 Accuracy of the higher-order derivatives

Let us take a further step by examining the accuracy of curvature, or the bending
moment, i.e., EId2w/dx2. Because we expect a jump at an element interface, we
can not apply the same approach above. Instead we find the optimal curvature
points, or Barlow points, using Taylor expansions with remainders.
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For simplicity, we work in the master coordinates ξ ∈ [−1, 1]:

ξ =
2x− xi − xi+1

h
. (6.86)

The corresponding shape functions are

ϕ̂0(ξ) =
(ξ − 1)2(2 + ξ)

4
, (6.87a)

ϕ̂1(ξ) =
h(ξ + 1)(ξ − 1)2

8
, (6.87b)

ϕ̂2(ξ) =
(ξ + 1)2(2− ξ)

4
, and (6.87c)

ϕ̂3(ξ) =
h(ξ + 1)2(ξ − 1)

8
, (6.87d)

where their second order derivatives are

ϕ̂′′0(ξ) =
3

2
ξ, (6.88a)

ϕ̂′′1(ξ) =
h

4
(3ξ − 1), (6.88b)

ϕ̂′′2(ξ) = −
3

2
ξ, and (6.88c)

ϕ̂′′3(ξ) =
h

4
(3ξ + 1). (6.88d)

The chain rule gives

∂

∂x
=

∂

∂ξ

∂ξ

∂x
=

2

h

∂

∂ξ
and (6.89)

∂2

∂x2
=

(
2

h

)2
∂2

∂ξ2
. (6.90)

Then, the error of curvature can be expressed as

e′′(x) =

(
2

h

)2

ê′′(ξ) =

(
2

h

)2 [

û′′(ξ)−
(
ûh
)′′

(ξ)
]

, (6.91)

where the nodal exactness gives

(
ûh
)′′

(ξ) = ϕ̂′′1 û(−1) + ϕ̂′′2
∂ξ

∂x
û′(−1) + ϕ̂′′3 û(1) + ϕ̂′′4

∂ξ

∂x
û′(1)

=
3

2
ξû(−1) + 1

2
(3ξ − 1)û′(−1)− 3

2
ξû(1) +

1

2
(3ξ + 1)û′(1). (6.92)
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Next, perform Taylor expansions about ξ = α such that

û(−1) = û(α) + (−1− α)û′(α) + 1

2
(−1− α)2û′′(α)

+
1

6
(−1− α)3û(3)(α) + 1

24
(−1− α)4û(4)(α)

+
1

120
(−1− α)5û(5)(C1), (6.93a)

û′(−1) = û′(α) + (−1− α)û′′(α) + 1

2
(−1− α)2û(3)(α)

+
1

6
(−1− α)3û(4)(α) + 1

24
(−1− α)4û(5)(C2), (6.93b)

û(1) = û(α) + (1− α)û′(α) + 1

2
(1− α)2û′′(α)

+
1

6
(1− α)3û(3)(α) + 1

24
(1− α)4û(4)(α)

+
1

120
(1− α)5û(5)(C3), and (6.93c)

û′(1) = û′(α) + (1− α)û′′(α) + 1

2
(1− α)2û(3)(α)

+
1

6
(1− α)3û(4)(α) + 1

24
(1− α)4û(5)(C4), (6.93d)

where Ci are some values in the given domain. Plugging the above into the
error formula we have

ê′′(α) =
1

6

(
1− 3α2

)
û(4)(α) +

∑

i

ciu
(5)(Ci) (6.94)

or

e′′(ᾱ) =
h2

24

(
1− 3α2

)
u(4)(ᾱ) +O

(
h3
)
, (6.95)

where ᾱ = x (α). Thus, the optimal curvature points are located at

ξ = ± 1√
3
, (6.96)

for which the corresponding error is of order O
(
h3
)
.

Note that these optimal curvature points correspond to the same integration
points as those used in the two-point Gauss–Legendre quadrature. We also
observe that the curvature is exact at the optimal points when each segment
[xi, xi+1] is uniformly loaded, i.e., q is constant. Additionally, the optimal point
is everywhere when the segment is unloaded.

Exercise 6.6.1 (Accuracy of bar problem) Repeat the preceding analyses
on nodal exactness and derivative accuracy for the one-dimensional bar problem.

6.7 Hierarchical elements

Hierarchical elements exhibit hierarchy in two aspects: polynomial order and
dimension. The former means that higher-order shape functions include all
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lower-order ones, unlike in Lagrange elements. This property facilitates straight-
forward implementation of p-refinement. The latter refers to a dimensional hier-
archy through traces, where higher-dimensional shape functions are constructed
from lower-dimensional ones, providing a systematic framework for element def-
inition.

6.7.1 Exact sequence elements

Exact sequence elements constitute a class of hierarchical elements in which
the discrete spaces of element shape functions are consistent with the exact se-
quence of the underlying energy spaces. In addition to enabling a systematic
construction of element shape functions, exact sequence elements ensure stabil-
ity in mixed formulations. For a comprehensive discussion, see [Fuentes et al.,
2015].

The four energy spaces form a sequence:

R
id−→ H1 grad−→ H (curl)

curl−→ H (div)
div−→ L2 0−→ {0} . (6.97)

The above sequence is exact, i.e.,

R (grad) = N (curl) and R (curl) = N (div) . (6.98)

6.8 Summary on Lagrange shape functions

Table 6.1: Shape functions for two-noded line.

Geometry

µ0 = 1− ξ gradµ0 = −1
µ1 = ξ gradµ1 = 1

Shape Functions

ϕ̂0 = µ0 grad ϕ̂0 = gradµ0

ϕ̂1 = µ1 grad ϕ̂1 = gradµ1

Table 6.2: Shape functions for three-noded line.

Geometry

µ0 = 2
(
ξ − 1

2

)
(ξ − 1) gradµ0 = 2

(
2ξ − 3

2

)

µ1 = 2ξ
(
ξ − 1

2

)
gradµ1 = 2

(
2ξ − 1

2

)

µ2 = 4ξ (1− ξ) gradµ2 = 4 (1− 2ξ)

Shape Functions

ϕ̂0 = µ0 grad ϕ̂0 = gradµ0

ϕ̂1 = µ1 grad ϕ̂1 = gradµ1

ϕ̂2 = µ2 grad ϕ̂2 = gradµ2
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Table 6.3: Shape functions for Q4 element.

Geometry

µξ1
0 = 1− ξ1 gradµξ1

0 =

(

−1
0

)

µξ1
1 = ξ1 gradµξ1

1 =

(

1

0

)

µξ2
0 = 1− ξ2 gradµξ2

0 =

(

0

−1

)

µξ2
1 = ξ2 gradµξ2

1 =

(

0

1

)

Shape Functions

ϕ̂0 = µξ1
0 µ

ξ2
0 grad ϕ̂0 = µξ1

0 gradµξ2
0 + µξ2

0 gradµξ1
0

ϕ̂1 = µξ1
1 µ

ξ2
0 grad ϕ̂1 = µξ1

1 gradµξ2
0 + µξ2

0 gradµξ1
1

ϕ̂2 = µξ1
1 µ

ξ2
1 grad ϕ̂2 = µξ1

1 gradµξ2
1 + µξ2

1 gradµξ1
1

ϕ̂3 = µξ1
0 µ

ξ2
1 grad ϕ̂3 = µξ1

0 gradµξ2
1 + µξ2

1 gradµξ1
0

TODO: shape functions for 3D Lagrange elements.
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Time Integration

7.1 Separation of space and time variables

The finite element method (FEM) is generally applied to discretize the spatial
domain and is not commonly used for temporal discretization. This is primarily
because FEM is an implicit scheme that couples all degrees of freedom. Con-
sequently, storing and factorizing the global system encompassing both spatial
and temporal degrees of freedom would be computationally intractable and in-
consistent with the causal nature of physical problems.

A common approach for a dynamic problem is to discretize space using FEM
and discretize time using finite difference method (FDM). For example, consider
a model one-dimensional wave equation:






∂

∂x

[

EA
∂u (x, t)

∂x

]

− ρA∂
2u (x, t)

∂t2
+ f (x, t) = 0, (x, t) ∈ Ω× I

u (x, t) = 0, x = 0, L
u (x, t) = uo (x) , t = 0
∂u (x, t)

∂t
= u′o (x) , t = 0

. (7.1)

The above equation describes wave propagation in a bar, when Ω = (0, L),
I = (0, T ], E is Young’s modulus, A is cross-sectional area, and ρ is mass
density.

Then, the Galerkin method gives the following weak form
{
uh ∈ Uh

b
(
uh, vh

)
= l
(
vh
)
, ∀vh ∈ Uh , (7.2)

where

b
(
uh, vh

)
=

∫ L

0

∂uh

∂x
EA

∂vh

∂x
dx+

∫ L

0

∂2uh

∂t2
ρvhdx and (7.3)

l
(
vh
)
=

∫ L

0

fvhdx. (7.4)

The associated function space is

Uh =
{
uh (x, t) = ai (t) gi (x) : uh

∣
∣
t
∈ H1 (0, L) , uh (0, t) = uh (L, t) = 0

}
.

(7.5)

59
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Here, gi (x) is the finite element basis function. Its coefficient is denoted by
ai (t), which is now a function in time.

The corresponding matrix equation reads

Ma′′ +Ka = F, (7.6)

where

Mij =

∫ L

0

giρAgjdx, (7.7)

Kij =

∫ L

0

dgi
dx

EA
dgj
dx

dx, and (7.8)

Fi =

∫ L

0

gifdx. (7.9)

Thus. we have a linear system of ordinary differential equation in time. Thus,
we are ready to use FDM for time integration.

Transforming a higher-order system into a first-order form is convenient, as
it allows various numerical methods to be expressed in a unified and compact
manner, and facilitates their straightforward adaptation to different problems.
A representative first-order model problem is given by

{
y′ = f (y) , t ∈ I
y = yo, t = 0

. (7.10)

If f is continuous with respect to t, then the solution to above reads

y (t) = yo +

∫ t

0

f (y (τ)) dτ. (7.11)

For example, the above second-order system (7.6) can be written in the
equivalent first-order form by defining

y =

(
u
u′

)

, (7.12)

yo =

(
uo
u′o

)

, and (7.13)

f (y) =

(
0

M−1F

)

−
[

0 I
M−1K 0

](
u
u′

)

︸ ︷︷ ︸
=y

. (7.14)

7.2 Finite difference methods

The basic principle of the finite difference method (FDM) is to approximate
derivatives by divided differences, i.e.,

t→ {tn}, y(tn) ∼ yn, n = 0, 1, . . . ,

where yn denotes the discrete solution values to be determined. Table 7.1 sum-
marizes several representative finite difference schemes.
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Table 7.1: Representative finite difference schemes.
method formula remarks

(forward) Euler method
yn+1 − yn

h
= f(yn) explicit

backward Euler method
yn+1 − yn

h
= f(yn+1) implicit

trapezoidal method
yn+1 − yn

h
=

1

2
[f(yn+1) + f(yn)] implicit

midpoint method
yn+2 − yn

2h
= f(yn+1) explicit

A finite difference scheme is called a one-step method if ∀n ≥ 0, un+1 depends
only on un. Here, the forward and backward Euler methods and the trapezoidal
(or Crank-Nicolson) method are classified as one-step methods, while the mid-
point method is a multistep method. Note that a multistep method requires a
fictitious value u−1 to obtain u1.

In terms of accuracy, the two Euler methods are first-order schemes with
an error of O(h), whereas trapezoidal and midpoint methods are second-order
schemes with an error of O(h2). The order of accuracy is determined by the
local truncation error (LTE). For F (yn+k, yn+k−1, . . . , yn, h) = 0 as a numerical
method, define LTEn as

LTEn = F (yn+k, yn+k−1, . . . , yn, h). (7.15)

For example, LTE for the Euler method reads

LTEn =F (y(tn+1), y(tn), h)

=
y(tn+1)− y(tn)

h
− f(y(tn)) (using Taylor expansion and ODE)

=
y(tn) + hy′(tn) +

h2

2 y
′′(τn)− y(tn)

h
− y′(tn) (tn ≤ τn ≤ tn+1)

=
h

2
y′′(τn) = O(h). (7.16)

Implicit methods generally require solving a system of equations at each
time step, while explicit methods compute un+1 directly in terms of the previous
values uk, k ≤ n. For many cases, implicit methods are more stable than explicit
methods.

7.3 A-stability

A finite difference scheme is absolutely stable if for h fixed, un remains bounded
as n→∞. Alternatively, the absolute stability is defined on the following test
problem [Quarteroni et al., 2006]:

{
y′ (t) = λy (t) , t > 0
y (0) = 1

, (7.17)

where λ ∈ C. Then, a finite difference scheme for approximating the test prob-
lem (7.17) is absolutely stable if

|yn| → 0 as n→∞. (7.18)
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Note that the solution to the test problem is y = eλt.
The absolute stability is generally depends on h and λ, where the region of

absolute stability is defined as

A = {z = hλ ∈ C : |yn| → 0 as n→∞} . (7.19)

For example, the forwards Euler method for approximating the test problem
gives yn+1 = yn + hλyn or

yn = (1 + λh)
n
, n ≥ 0. (7.20)

The absolute stability holds iff

|1 + hλ| < 1, (7.21)

i.e., when λh lies inside the unit circle centered at (−1, 0) in the complex plane.
On the other hand, the backward Euler method gives

yn = (1− λh)−n
, n ≥ 0. (7.22)

Thus, the absolute stability holds iff

|1− hλ| > 1. (7.23)

The regions of absolute stability for the above two methods are shown in Fig-
ure 7.1.

In addition, a method is called A-stable if

A ∩ C− = C−, (7.24)

where

C− = {z ∈ C : Re (z) < 0} . (7.25)

A-stability is also called unconditional absolute stability. The backward Euler
and trapezoidal methods are A-stable. Note that there is no explicit method
that is A-stable.

Exercise 7.3.1 (Stability of Euler method) Approximate the solution of

{
y′ (t) = −5y (t) , t > 0
y (0) = 1

. (7.26)

using both the forward Euler and backward Euler methods. Present the numerical
results for various sizes of h, and discuss the observations with respect to each
method’s region of absolute stability.
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(a) (b)

Figure 7.1: Region of absolute stability. (a) forward Euler method. (b) back-
ward Euler method showing A-stability.

7.4 Runge-Kutta methods

The Runge–Kutta (RK) methods are high-order multi-stage time-integration
schemes. Their general form is expressed as

yn+1 = yn + h

S∑

k=1

bkKk, where (7.27)

Kk = f



yn + h

S∑

j=1

ajkKj



 . (7.28)

The method is explicit when ajk = 0 for all j ≥ k. Here, S denotes the number
of stages, i.e., the number of function evaluations performed per time step.
Accordingly, the Runge–Kutta methods are classified as multi-stage methods.

For example, a second-order Runge–Kutta method can be written as

yn+1 = yn + h

(
1

2
K1 +

1

2
K2

)

, (7.29)

K1 = f (yn + 0) , (7.30)

K2 = f (yn + hK1) . (7.31)

This scheme can be derived from the trapezoidal rule combined with the Euler
method, namely,

yn+1 − yn
h

=
1

2
[f (yn) + f (yn+1)] (use Euler to determine f (yn+1))

=
1

2
[f (yn) + f (yn + hf (yn))] . (7.32)

The standard 4th-order explicit RK method is

yn+1 = yn + h

[
1

6
K1 +

2

6
K2 +

2

6
K3 +

1

6
K4

]

, (7.33)



64 CHAPTER 7. TIME INTEGRATION

where

K1 = f (yn) , (7.34a)

K2 = f

(

yn +
h

2
K1

)

, (7.34b)

K3 = f

(

yn +
h

2
K2

)

, (7.34c)

K4 = f (yn + hK3) . (7.34d)

In general, the coefficients bk and ajk are determined through a Taylor series
expansion of the numerical scheme and the ODE. The coefficients are selected
so that the leading terms of the local truncation error (LTE) are canceled. The
single-stage scheme corresponds to the Euler method. In practice, the number
of stages S is typically chosen between 1 and 6, since eliminating higher-order
LTE terms becomes increasingly difficult for S > 6.

Example 7.4.1 (4th-order RK for 2nd-order problems) Derive the
standard 4th-order RK method for the nonlinear second-order system:

Mu′′ + Cu′ + g (u) = F, (7.35)

where M is invertible.

Convering the above into first-order system y′ = f (y), we have

y =

(
u
v

)

and f (y) =

(
v

M−1 [F − Cv − g (u)]

)

. (7.36)

Let Ki = (Ku
i , K

v
i )

T
, (7.34) is expanded by

(
Ku

1

Kv
1

)

=

(
vn

M−1 [F − Cvn − g (un)]

)

, (7.37a)

(
Ku

2

Kv
2

)

=

(
vn + h

2K
v
1

M−1
[
F − C

(
vn + h

2K
v
1

)
− g

(
un + h

2K
u
1

)]

)

, (7.37b)

(
Ku

3

Kv
3

)

=

(
vn + h

2K
v
2

M−1
[
F − C

(
vn + h

2K
v
2

)
− g

(
un + h

2K
u
2

)]

)

, (7.37c)

(
Ku

4

Kv
4

)

=

(
vn + hKv

3

M−1 [F − C (vn + hKv
3 )− g (un + hKu

3 )]

)

. (7.37d)

Then, we have

un+1 =un + h

[
1

6
Ku

1 +
2

6
Ku

2 +
2

6
Ku

3 +
1

6
Ku

4

]

and (7.38)

vn+1 = vn + h

[
1

6
Kv

1 +
2

6
Kv

2 +
2

6
Kv

3 +
1

6
Kv

4

]

. (7.39)
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7.5 Newmark method

Newmark method on

Mu′′ + Cu′ + g (u) = F (7.40)

reads

un+1 =un + hvn +
h2

2
[(1− 2β) an + 2βan+1] and (7.41)

vn+1 = vn + (1− γ)han + γhan+1, (7.42)

where

an =M−1 [F − Cvn − g (un)] . (7.43)

In the above, β and γ are parameters. Typical choices gives

• average acceleration (trapezoidal method): γ = 1/2 and β = 1/4

• linear acceleration: γ = 1/2 and β = 1/6

• explicit central difference: γ = 1/2 and β = 0
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