Final Exam - Structural Analysis 1

Seoul National University

December 16th, 2024

Problem 1. Consider the quarter-circular structure shown in Figure 1 ($x^2 + y^2 = R^2$, $x, y \in (0, R)$), subjected to two different loading cases. Derive the relation between P, Δ , M, and θ using the general expression of the reciprocity:

$$\int_0^l q_1 w_2 ds - [V_1 w_2]_0^l + [M_1 \theta_2]_0^l = \int_0^l q_2 w_1 ds - [V_2 w_1]_0^l + [M_2 \theta_1]_0^l. \tag{1}$$

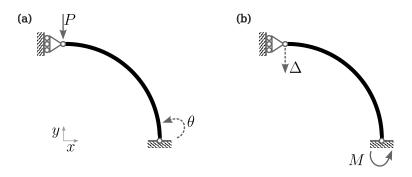


Figure 1: Reciprocity. (a) Loading case 1. (b) Loading case 2.

Problem 2. Consider a cantilever beam with a spring support (Figure 2). The corresponding governing equation and the boundary conditions are

$$\begin{cases}
\frac{d^2}{dx^2} \left[EI \frac{d^2w}{dx^2} \right] = q, & x \in (0, L) \\
w = 0, & x = 0 \\
\frac{dw}{dx} = 0, & x = 0 \\
EI \frac{d^2w}{dx^2} = 0, & x = L \\
EI \frac{d^3w}{dx^3} - kw = 0, & x = L
\end{cases}$$
(2)

(a) Let \overline{w} denote a test function (or the virtual displacement), derive the Principle of Virtual Work using the weighted residual method, as follows:

$$\int_0^L \frac{d^2 \overline{w}}{dx^2} EI \frac{d^2 w}{dx^2} dx + wk \overline{w}|_{x=L} - \int_0^L \overline{w} q dx = 0.$$
 (3)

(b) State the corresponding essential (or Dirichlet) boundary conditions for \overline{w} at x=0.

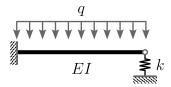


Figure 2: Robin boundary condition.

Problem 3. Consider an infinitely repeated series of identical beam members subjected to a uniform distributed load q (Figure 3). By exploiting symmetry, calculate the bending moment at any support.

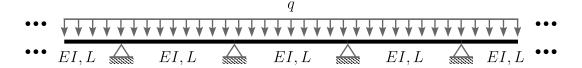


Figure 3: Indeterminate structure.

Problem 4. Consider an infinitely repeated series of identical beam members subjected to a point load at $x = \xi$, $x, \xi \in (-\infty, \infty)$ (Figure 4).

- (a) Informed by the Müller-Breslau's principle (without conducting any numerical calculations), sketch the influence line for the support reaction at x = 0 when the point load is placed at an arbitrary position ξ .
- (b) Let $I_R(\xi)$ denote the influence line in part (a). What is the value of $I_R(\xi)$ at $\xi = 0$?
- (c) Determine the limiting value of the influence line as ξ tends to infinity, i.e., find $\lim_{\xi \to \infty} I_R(\xi)$.
- (d) Evaluate the integral of the influence line over the entire real line, i.e., find $\int_{-\infty}^{\infty} I_R(\xi) d\xi$. Note: Please provide appropriate reasoning for each problem.

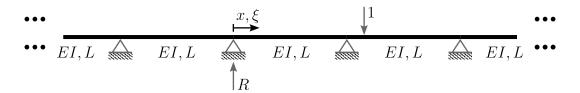


Figure 4: Influence line.

Acknowledgment Thank you all for participating in this class. Life as an engineer revolves around identifying and solving problems, often without clear or predefined solutions. Throughout this course, I tried to share my perspective on self-verifying solutions rather than focusing solely on computational skills. I hope you found this exploration of structural analysis engaging and that it inspires you to continue your studies in Structural Analysis 2 and beyond.

Table 1: Integration formulae for a product of two functions $\int_0^L M_A M_B dx$.

	0	1	J_0	71 B
M_A	$\stackrel{M_1}{\longleftarrow}$	M_1 L M_2	$ \begin{array}{c} M_1 \\ \hline a \\ L \end{array} $	$\stackrel{M_1}{\longleftarrow}$
$\longleftarrow L \qquad M_3$	$rac{L}{2}M_1M_3$	$\frac{L}{2}\left(M_1+M_2\right)M_3$	$rac{L}{2}M_1M_3$	$\frac{2L}{3}M_1M_3$
$\stackrel{M_3}{\longleftarrow}$	$rac{L}{3}M_1M_3$	$\frac{L}{6}\left(M_1 + 2M_2\right)M_3$	$\frac{L}{6} \left(1 + \frac{a}{L} \right) M_1 M_3$	$rac{L}{3}M_1M_3$
M_3 L	$rac{L}{6}M_1M_3$	$\frac{L}{6} \left(2M_1 + M_2\right) M_3$	$\frac{L}{6}\left(1+\frac{b}{L}\right)M_1M_3$	$\frac{L}{3}M_1M_3$
M_3 L M_4	$\frac{L}{6}M_1\left(M_3+2M_4\right)$	$\begin{vmatrix} \frac{L}{6}M_1(2M_3 + M_4) \\ + \frac{L}{6}M_2(M_3 + 2M_4) \end{vmatrix}$	$\frac{L}{6} \left(1 + \frac{b}{L} \right) M_1 M_3 + \frac{L}{6} \left(1 + \frac{a}{L} \right) M_1 M_4$	$\frac{L}{3}M_1\left(M_3+M_4\right)$
$ \begin{array}{c} M_3 \\ \hline c \\ L \end{array} $	$\frac{L}{6} \left(1 + \frac{c}{L} \right) M_1 M_3$	$\begin{vmatrix} \frac{L}{6} \left(1 + \frac{d}{L} \right) M_1 M_3 \\ + \frac{L}{6} \left(1 + \frac{c}{L} \right) M_2 M_3 \end{vmatrix}$	for $c \le a$, $\frac{L}{3}M_1M_3$ $-\frac{L(a-c)^2}{6ad}M_1M_3$	$\frac{L}{3}\left(1+\frac{cd}{L^2}\right)M_1M_3$
$\stackrel{M_3}{\longleftarrow}$	$rac{L}{3}M_1M_3$	$\frac{L}{3}\left(M_1+M_2\right)M_3$	$\frac{L}{3}\left(1+\frac{ab}{L^2}\right)M_1M_3$	$\frac{8L}{15}M_1M_3$
$\stackrel{M_3}{\longleftarrow}$	$rac{L}{4}M_1M_3$	$ \frac{L}{12} \left(M_1 + 3M_2 \right) M_3 $	$\frac{L}{12}\left(1+\frac{a}{L}+\frac{a^2}{L^2}\right)M_1M_3$	$rac{L}{5}M_1M_3$